Metamath Proof Explorer


Theorem xpsneng

Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of Mendelson p. 254. (Contributed by NM, 22-Oct-2004)

Ref Expression
Assertion xpsneng
|- ( ( A e. V /\ B e. W ) -> ( A X. { B } ) ~~ A )

Proof

Step Hyp Ref Expression
1 xpeq1
 |-  ( x = A -> ( x X. { y } ) = ( A X. { y } ) )
2 id
 |-  ( x = A -> x = A )
3 1 2 breq12d
 |-  ( x = A -> ( ( x X. { y } ) ~~ x <-> ( A X. { y } ) ~~ A ) )
4 sneq
 |-  ( y = B -> { y } = { B } )
5 4 xpeq2d
 |-  ( y = B -> ( A X. { y } ) = ( A X. { B } ) )
6 5 breq1d
 |-  ( y = B -> ( ( A X. { y } ) ~~ A <-> ( A X. { B } ) ~~ A ) )
7 vex
 |-  x e. _V
8 vex
 |-  y e. _V
9 7 8 xpsnen
 |-  ( x X. { y } ) ~~ x
10 3 6 9 vtocl2g
 |-  ( ( A e. V /\ B e. W ) -> ( A X. { B } ) ~~ A )