| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmlbs.f |
|- F = ( R freeLMod I ) |
| 2 |
|
frlmlbs.u |
|- U = ( R unitVec I ) |
| 3 |
|
frlmlbs.j |
|- J = ( LBasis ` F ) |
| 4 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 5 |
2 1 4
|
uvcff |
|- ( ( R e. Ring /\ I e. V ) -> U : I --> ( Base ` F ) ) |
| 6 |
5
|
frnd |
|- ( ( R e. Ring /\ I e. V ) -> ran U C_ ( Base ` F ) ) |
| 7 |
|
suppssdm |
|- ( a supp ( 0g ` R ) ) C_ dom a |
| 8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 9 |
1 8 4
|
frlmbasf |
|- ( ( I e. V /\ a e. ( Base ` F ) ) -> a : I --> ( Base ` R ) ) |
| 10 |
9
|
adantll |
|- ( ( ( R e. Ring /\ I e. V ) /\ a e. ( Base ` F ) ) -> a : I --> ( Base ` R ) ) |
| 11 |
7 10
|
fssdm |
|- ( ( ( R e. Ring /\ I e. V ) /\ a e. ( Base ` F ) ) -> ( a supp ( 0g ` R ) ) C_ I ) |
| 12 |
11
|
ralrimiva |
|- ( ( R e. Ring /\ I e. V ) -> A. a e. ( Base ` F ) ( a supp ( 0g ` R ) ) C_ I ) |
| 13 |
|
rabid2 |
|- ( ( Base ` F ) = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ I } <-> A. a e. ( Base ` F ) ( a supp ( 0g ` R ) ) C_ I ) |
| 14 |
12 13
|
sylibr |
|- ( ( R e. Ring /\ I e. V ) -> ( Base ` F ) = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ I } ) |
| 15 |
|
ssid |
|- I C_ I |
| 16 |
|
eqid |
|- ( LSpan ` F ) = ( LSpan ` F ) |
| 17 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 18 |
|
eqid |
|- { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ I } = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ I } |
| 19 |
1 2 16 4 17 18
|
frlmsslsp |
|- ( ( R e. Ring /\ I e. V /\ I C_ I ) -> ( ( LSpan ` F ) ` ( U " I ) ) = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ I } ) |
| 20 |
15 19
|
mp3an3 |
|- ( ( R e. Ring /\ I e. V ) -> ( ( LSpan ` F ) ` ( U " I ) ) = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ I } ) |
| 21 |
|
ffn |
|- ( U : I --> ( Base ` F ) -> U Fn I ) |
| 22 |
|
fnima |
|- ( U Fn I -> ( U " I ) = ran U ) |
| 23 |
5 21 22
|
3syl |
|- ( ( R e. Ring /\ I e. V ) -> ( U " I ) = ran U ) |
| 24 |
23
|
fveq2d |
|- ( ( R e. Ring /\ I e. V ) -> ( ( LSpan ` F ) ` ( U " I ) ) = ( ( LSpan ` F ) ` ran U ) ) |
| 25 |
14 20 24
|
3eqtr2rd |
|- ( ( R e. Ring /\ I e. V ) -> ( ( LSpan ` F ) ` ran U ) = ( Base ` F ) ) |
| 26 |
|
eqid |
|- ( .s ` F ) = ( .s ` F ) |
| 27 |
|
eqid |
|- { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ ( I \ { c } ) } = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ ( I \ { c } ) } |
| 28 |
|
simpll |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> R e. Ring ) |
| 29 |
|
simplr |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> I e. V ) |
| 30 |
|
difssd |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( I \ { c } ) C_ I ) |
| 31 |
|
vsnid |
|- c e. { c } |
| 32 |
|
snssi |
|- ( c e. I -> { c } C_ I ) |
| 33 |
32
|
ad2antrl |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> { c } C_ I ) |
| 34 |
|
dfss4 |
|- ( { c } C_ I <-> ( I \ ( I \ { c } ) ) = { c } ) |
| 35 |
33 34
|
sylib |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( I \ ( I \ { c } ) ) = { c } ) |
| 36 |
31 35
|
eleqtrrid |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> c e. ( I \ ( I \ { c } ) ) ) |
| 37 |
1
|
frlmsca |
|- ( ( R e. Ring /\ I e. V ) -> R = ( Scalar ` F ) ) |
| 38 |
37
|
fveq2d |
|- ( ( R e. Ring /\ I e. V ) -> ( Base ` R ) = ( Base ` ( Scalar ` F ) ) ) |
| 39 |
37
|
fveq2d |
|- ( ( R e. Ring /\ I e. V ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` F ) ) ) |
| 40 |
39
|
sneqd |
|- ( ( R e. Ring /\ I e. V ) -> { ( 0g ` R ) } = { ( 0g ` ( Scalar ` F ) ) } ) |
| 41 |
38 40
|
difeq12d |
|- ( ( R e. Ring /\ I e. V ) -> ( ( Base ` R ) \ { ( 0g ` R ) } ) = ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) |
| 42 |
41
|
eleq2d |
|- ( ( R e. Ring /\ I e. V ) -> ( b e. ( ( Base ` R ) \ { ( 0g ` R ) } ) <-> b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) |
| 43 |
42
|
biimpar |
|- ( ( ( R e. Ring /\ I e. V ) /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) -> b e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
| 44 |
43
|
adantrl |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> b e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
| 45 |
1 2 4 8 26 17 27 28 29 30 36 44
|
frlmssuvc2 |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> -. ( b ( .s ` F ) ( U ` c ) ) e. { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ ( I \ { c } ) } ) |
| 46 |
17 8
|
ringelnzr |
|- ( ( R e. Ring /\ b e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) -> R e. NzRing ) |
| 47 |
28 44 46
|
syl2anc |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> R e. NzRing ) |
| 48 |
2 1 4
|
uvcf1 |
|- ( ( R e. NzRing /\ I e. V ) -> U : I -1-1-> ( Base ` F ) ) |
| 49 |
47 29 48
|
syl2anc |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> U : I -1-1-> ( Base ` F ) ) |
| 50 |
|
df-f1 |
|- ( U : I -1-1-> ( Base ` F ) <-> ( U : I --> ( Base ` F ) /\ Fun `' U ) ) |
| 51 |
50
|
simprbi |
|- ( U : I -1-1-> ( Base ` F ) -> Fun `' U ) |
| 52 |
|
imadif |
|- ( Fun `' U -> ( U " ( I \ { c } ) ) = ( ( U " I ) \ ( U " { c } ) ) ) |
| 53 |
49 51 52
|
3syl |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( U " ( I \ { c } ) ) = ( ( U " I ) \ ( U " { c } ) ) ) |
| 54 |
|
f1fn |
|- ( U : I -1-1-> ( Base ` F ) -> U Fn I ) |
| 55 |
49 54 22
|
3syl |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( U " I ) = ran U ) |
| 56 |
49 54
|
syl |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> U Fn I ) |
| 57 |
|
simprl |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> c e. I ) |
| 58 |
|
fnsnfv |
|- ( ( U Fn I /\ c e. I ) -> { ( U ` c ) } = ( U " { c } ) ) |
| 59 |
56 57 58
|
syl2anc |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> { ( U ` c ) } = ( U " { c } ) ) |
| 60 |
59
|
eqcomd |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( U " { c } ) = { ( U ` c ) } ) |
| 61 |
55 60
|
difeq12d |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( ( U " I ) \ ( U " { c } ) ) = ( ran U \ { ( U ` c ) } ) ) |
| 62 |
53 61
|
eqtr2d |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( ran U \ { ( U ` c ) } ) = ( U " ( I \ { c } ) ) ) |
| 63 |
62
|
fveq2d |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) = ( ( LSpan ` F ) ` ( U " ( I \ { c } ) ) ) ) |
| 64 |
1 2 16 4 17 27
|
frlmsslsp |
|- ( ( R e. Ring /\ I e. V /\ ( I \ { c } ) C_ I ) -> ( ( LSpan ` F ) ` ( U " ( I \ { c } ) ) ) = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ ( I \ { c } ) } ) |
| 65 |
28 29 30 64
|
syl3anc |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( ( LSpan ` F ) ` ( U " ( I \ { c } ) ) ) = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ ( I \ { c } ) } ) |
| 66 |
63 65
|
eqtrd |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) = { a e. ( Base ` F ) | ( a supp ( 0g ` R ) ) C_ ( I \ { c } ) } ) |
| 67 |
45 66
|
neleqtrrd |
|- ( ( ( R e. Ring /\ I e. V ) /\ ( c e. I /\ b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) ) ) -> -. ( b ( .s ` F ) ( U ` c ) ) e. ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) ) |
| 68 |
67
|
ralrimivva |
|- ( ( R e. Ring /\ I e. V ) -> A. c e. I A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) ( U ` c ) ) e. ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) ) |
| 69 |
|
oveq2 |
|- ( a = ( U ` c ) -> ( b ( .s ` F ) a ) = ( b ( .s ` F ) ( U ` c ) ) ) |
| 70 |
|
sneq |
|- ( a = ( U ` c ) -> { a } = { ( U ` c ) } ) |
| 71 |
70
|
difeq2d |
|- ( a = ( U ` c ) -> ( ran U \ { a } ) = ( ran U \ { ( U ` c ) } ) ) |
| 72 |
71
|
fveq2d |
|- ( a = ( U ` c ) -> ( ( LSpan ` F ) ` ( ran U \ { a } ) ) = ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) ) |
| 73 |
69 72
|
eleq12d |
|- ( a = ( U ` c ) -> ( ( b ( .s ` F ) a ) e. ( ( LSpan ` F ) ` ( ran U \ { a } ) ) <-> ( b ( .s ` F ) ( U ` c ) ) e. ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) ) ) |
| 74 |
73
|
notbid |
|- ( a = ( U ` c ) -> ( -. ( b ( .s ` F ) a ) e. ( ( LSpan ` F ) ` ( ran U \ { a } ) ) <-> -. ( b ( .s ` F ) ( U ` c ) ) e. ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) ) ) |
| 75 |
74
|
ralbidv |
|- ( a = ( U ` c ) -> ( A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) a ) e. ( ( LSpan ` F ) ` ( ran U \ { a } ) ) <-> A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) ( U ` c ) ) e. ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) ) ) |
| 76 |
75
|
ralrn |
|- ( U Fn I -> ( A. a e. ran U A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) a ) e. ( ( LSpan ` F ) ` ( ran U \ { a } ) ) <-> A. c e. I A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) ( U ` c ) ) e. ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) ) ) |
| 77 |
5 21 76
|
3syl |
|- ( ( R e. Ring /\ I e. V ) -> ( A. a e. ran U A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) a ) e. ( ( LSpan ` F ) ` ( ran U \ { a } ) ) <-> A. c e. I A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) ( U ` c ) ) e. ( ( LSpan ` F ) ` ( ran U \ { ( U ` c ) } ) ) ) ) |
| 78 |
68 77
|
mpbird |
|- ( ( R e. Ring /\ I e. V ) -> A. a e. ran U A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) a ) e. ( ( LSpan ` F ) ` ( ran U \ { a } ) ) ) |
| 79 |
1
|
ovexi |
|- F e. _V |
| 80 |
|
eqid |
|- ( Scalar ` F ) = ( Scalar ` F ) |
| 81 |
|
eqid |
|- ( Base ` ( Scalar ` F ) ) = ( Base ` ( Scalar ` F ) ) |
| 82 |
|
eqid |
|- ( 0g ` ( Scalar ` F ) ) = ( 0g ` ( Scalar ` F ) ) |
| 83 |
4 80 26 81 3 16 82
|
islbs |
|- ( F e. _V -> ( ran U e. J <-> ( ran U C_ ( Base ` F ) /\ ( ( LSpan ` F ) ` ran U ) = ( Base ` F ) /\ A. a e. ran U A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) a ) e. ( ( LSpan ` F ) ` ( ran U \ { a } ) ) ) ) ) |
| 84 |
79 83
|
ax-mp |
|- ( ran U e. J <-> ( ran U C_ ( Base ` F ) /\ ( ( LSpan ` F ) ` ran U ) = ( Base ` F ) /\ A. a e. ran U A. b e. ( ( Base ` ( Scalar ` F ) ) \ { ( 0g ` ( Scalar ` F ) ) } ) -. ( b ( .s ` F ) a ) e. ( ( LSpan ` F ) ` ( ran U \ { a } ) ) ) ) |
| 85 |
6 25 78 84
|
syl3anbrc |
|- ( ( R e. Ring /\ I e. V ) -> ran U e. J ) |