| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmssuvc1.f |
|- F = ( R freeLMod I ) |
| 2 |
|
frlmssuvc1.u |
|- U = ( R unitVec I ) |
| 3 |
|
frlmssuvc1.b |
|- B = ( Base ` F ) |
| 4 |
|
frlmssuvc1.k |
|- K = ( Base ` R ) |
| 5 |
|
frlmssuvc1.t |
|- .x. = ( .s ` F ) |
| 6 |
|
frlmssuvc1.z |
|- .0. = ( 0g ` R ) |
| 7 |
|
frlmssuvc1.c |
|- C = { x e. B | ( x supp .0. ) C_ J } |
| 8 |
|
frlmssuvc1.r |
|- ( ph -> R e. Ring ) |
| 9 |
|
frlmssuvc1.i |
|- ( ph -> I e. V ) |
| 10 |
|
frlmssuvc1.j |
|- ( ph -> J C_ I ) |
| 11 |
|
frlmssuvc2.l |
|- ( ph -> L e. ( I \ J ) ) |
| 12 |
|
frlmssuvc2.x |
|- ( ph -> X e. ( K \ { .0. } ) ) |
| 13 |
|
fveq2 |
|- ( x = L -> ( ( X .x. ( U ` L ) ) ` x ) = ( ( X .x. ( U ` L ) ) ` L ) ) |
| 14 |
13
|
neeq1d |
|- ( x = L -> ( ( ( X .x. ( U ` L ) ) ` x ) =/= .0. <-> ( ( X .x. ( U ` L ) ) ` L ) =/= .0. ) ) |
| 15 |
11
|
eldifad |
|- ( ph -> L e. I ) |
| 16 |
12
|
eldifad |
|- ( ph -> X e. K ) |
| 17 |
2 1 3
|
uvcff |
|- ( ( R e. Ring /\ I e. V ) -> U : I --> B ) |
| 18 |
8 9 17
|
syl2anc |
|- ( ph -> U : I --> B ) |
| 19 |
18 15
|
ffvelcdmd |
|- ( ph -> ( U ` L ) e. B ) |
| 20 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 21 |
1 3 4 9 16 19 15 5 20
|
frlmvscaval |
|- ( ph -> ( ( X .x. ( U ` L ) ) ` L ) = ( X ( .r ` R ) ( ( U ` L ) ` L ) ) ) |
| 22 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 23 |
2 8 9 15 22
|
uvcvv1 |
|- ( ph -> ( ( U ` L ) ` L ) = ( 1r ` R ) ) |
| 24 |
23
|
oveq2d |
|- ( ph -> ( X ( .r ` R ) ( ( U ` L ) ` L ) ) = ( X ( .r ` R ) ( 1r ` R ) ) ) |
| 25 |
4 20 22
|
ringridm |
|- ( ( R e. Ring /\ X e. K ) -> ( X ( .r ` R ) ( 1r ` R ) ) = X ) |
| 26 |
8 16 25
|
syl2anc |
|- ( ph -> ( X ( .r ` R ) ( 1r ` R ) ) = X ) |
| 27 |
21 24 26
|
3eqtrd |
|- ( ph -> ( ( X .x. ( U ` L ) ) ` L ) = X ) |
| 28 |
|
eldifsni |
|- ( X e. ( K \ { .0. } ) -> X =/= .0. ) |
| 29 |
12 28
|
syl |
|- ( ph -> X =/= .0. ) |
| 30 |
27 29
|
eqnetrd |
|- ( ph -> ( ( X .x. ( U ` L ) ) ` L ) =/= .0. ) |
| 31 |
14 15 30
|
elrabd |
|- ( ph -> L e. { x e. I | ( ( X .x. ( U ` L ) ) ` x ) =/= .0. } ) |
| 32 |
11
|
eldifbd |
|- ( ph -> -. L e. J ) |
| 33 |
|
nelss |
|- ( ( L e. { x e. I | ( ( X .x. ( U ` L ) ) ` x ) =/= .0. } /\ -. L e. J ) -> -. { x e. I | ( ( X .x. ( U ` L ) ) ` x ) =/= .0. } C_ J ) |
| 34 |
31 32 33
|
syl2anc |
|- ( ph -> -. { x e. I | ( ( X .x. ( U ` L ) ) ` x ) =/= .0. } C_ J ) |
| 35 |
1
|
frlmlmod |
|- ( ( R e. Ring /\ I e. V ) -> F e. LMod ) |
| 36 |
8 9 35
|
syl2anc |
|- ( ph -> F e. LMod ) |
| 37 |
1
|
frlmsca |
|- ( ( R e. Ring /\ I e. V ) -> R = ( Scalar ` F ) ) |
| 38 |
8 9 37
|
syl2anc |
|- ( ph -> R = ( Scalar ` F ) ) |
| 39 |
38
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` F ) ) ) |
| 40 |
4 39
|
eqtrid |
|- ( ph -> K = ( Base ` ( Scalar ` F ) ) ) |
| 41 |
16 40
|
eleqtrd |
|- ( ph -> X e. ( Base ` ( Scalar ` F ) ) ) |
| 42 |
|
eqid |
|- ( Scalar ` F ) = ( Scalar ` F ) |
| 43 |
|
eqid |
|- ( Base ` ( Scalar ` F ) ) = ( Base ` ( Scalar ` F ) ) |
| 44 |
3 42 5 43
|
lmodvscl |
|- ( ( F e. LMod /\ X e. ( Base ` ( Scalar ` F ) ) /\ ( U ` L ) e. B ) -> ( X .x. ( U ` L ) ) e. B ) |
| 45 |
36 41 19 44
|
syl3anc |
|- ( ph -> ( X .x. ( U ` L ) ) e. B ) |
| 46 |
1 4 3
|
frlmbasf |
|- ( ( I e. V /\ ( X .x. ( U ` L ) ) e. B ) -> ( X .x. ( U ` L ) ) : I --> K ) |
| 47 |
9 45 46
|
syl2anc |
|- ( ph -> ( X .x. ( U ` L ) ) : I --> K ) |
| 48 |
47
|
ffnd |
|- ( ph -> ( X .x. ( U ` L ) ) Fn I ) |
| 49 |
6
|
fvexi |
|- .0. e. _V |
| 50 |
49
|
a1i |
|- ( ph -> .0. e. _V ) |
| 51 |
|
suppvalfn |
|- ( ( ( X .x. ( U ` L ) ) Fn I /\ I e. V /\ .0. e. _V ) -> ( ( X .x. ( U ` L ) ) supp .0. ) = { x e. I | ( ( X .x. ( U ` L ) ) ` x ) =/= .0. } ) |
| 52 |
48 9 50 51
|
syl3anc |
|- ( ph -> ( ( X .x. ( U ` L ) ) supp .0. ) = { x e. I | ( ( X .x. ( U ` L ) ) ` x ) =/= .0. } ) |
| 53 |
52
|
sseq1d |
|- ( ph -> ( ( ( X .x. ( U ` L ) ) supp .0. ) C_ J <-> { x e. I | ( ( X .x. ( U ` L ) ) ` x ) =/= .0. } C_ J ) ) |
| 54 |
34 53
|
mtbird |
|- ( ph -> -. ( ( X .x. ( U ` L ) ) supp .0. ) C_ J ) |
| 55 |
54
|
intnand |
|- ( ph -> -. ( ( X .x. ( U ` L ) ) e. B /\ ( ( X .x. ( U ` L ) ) supp .0. ) C_ J ) ) |
| 56 |
|
oveq1 |
|- ( x = ( X .x. ( U ` L ) ) -> ( x supp .0. ) = ( ( X .x. ( U ` L ) ) supp .0. ) ) |
| 57 |
56
|
sseq1d |
|- ( x = ( X .x. ( U ` L ) ) -> ( ( x supp .0. ) C_ J <-> ( ( X .x. ( U ` L ) ) supp .0. ) C_ J ) ) |
| 58 |
57 7
|
elrab2 |
|- ( ( X .x. ( U ` L ) ) e. C <-> ( ( X .x. ( U ` L ) ) e. B /\ ( ( X .x. ( U ` L ) ) supp .0. ) C_ J ) ) |
| 59 |
55 58
|
sylnibr |
|- ( ph -> -. ( X .x. ( U ` L ) ) e. C ) |