Metamath Proof Explorer


Theorem frlmssuvc2

Description: A nonzero scalar multiple of a unit vector not included in a support-restriction subspace is not included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015) (Revised by AV, 24-Jun-2019)

Ref Expression
Hypotheses frlmssuvc1.f F = R freeLMod I
frlmssuvc1.u U = R unitVec I
frlmssuvc1.b B = Base F
frlmssuvc1.k K = Base R
frlmssuvc1.t · ˙ = F
frlmssuvc1.z 0 ˙ = 0 R
frlmssuvc1.c C = x B | x supp 0 ˙ J
frlmssuvc1.r φ R Ring
frlmssuvc1.i φ I V
frlmssuvc1.j φ J I
frlmssuvc2.l φ L I J
frlmssuvc2.x φ X K 0 ˙
Assertion frlmssuvc2 φ ¬ X · ˙ U L C

Proof

Step Hyp Ref Expression
1 frlmssuvc1.f F = R freeLMod I
2 frlmssuvc1.u U = R unitVec I
3 frlmssuvc1.b B = Base F
4 frlmssuvc1.k K = Base R
5 frlmssuvc1.t · ˙ = F
6 frlmssuvc1.z 0 ˙ = 0 R
7 frlmssuvc1.c C = x B | x supp 0 ˙ J
8 frlmssuvc1.r φ R Ring
9 frlmssuvc1.i φ I V
10 frlmssuvc1.j φ J I
11 frlmssuvc2.l φ L I J
12 frlmssuvc2.x φ X K 0 ˙
13 fveq2 x = L X · ˙ U L x = X · ˙ U L L
14 13 neeq1d x = L X · ˙ U L x 0 ˙ X · ˙ U L L 0 ˙
15 11 eldifad φ L I
16 12 eldifad φ X K
17 2 1 3 uvcff R Ring I V U : I B
18 8 9 17 syl2anc φ U : I B
19 18 15 ffvelrnd φ U L B
20 eqid R = R
21 1 3 4 9 16 19 15 5 20 frlmvscaval φ X · ˙ U L L = X R U L L
22 eqid 1 R = 1 R
23 2 8 9 15 22 uvcvv1 φ U L L = 1 R
24 23 oveq2d φ X R U L L = X R 1 R
25 4 20 22 ringridm R Ring X K X R 1 R = X
26 8 16 25 syl2anc φ X R 1 R = X
27 21 24 26 3eqtrd φ X · ˙ U L L = X
28 eldifsni X K 0 ˙ X 0 ˙
29 12 28 syl φ X 0 ˙
30 27 29 eqnetrd φ X · ˙ U L L 0 ˙
31 14 15 30 elrabd φ L x I | X · ˙ U L x 0 ˙
32 11 eldifbd φ ¬ L J
33 nelss L x I | X · ˙ U L x 0 ˙ ¬ L J ¬ x I | X · ˙ U L x 0 ˙ J
34 31 32 33 syl2anc φ ¬ x I | X · ˙ U L x 0 ˙ J
35 1 frlmlmod R Ring I V F LMod
36 8 9 35 syl2anc φ F LMod
37 1 frlmsca R Ring I V R = Scalar F
38 8 9 37 syl2anc φ R = Scalar F
39 38 fveq2d φ Base R = Base Scalar F
40 4 39 syl5eq φ K = Base Scalar F
41 16 40 eleqtrd φ X Base Scalar F
42 eqid Scalar F = Scalar F
43 eqid Base Scalar F = Base Scalar F
44 3 42 5 43 lmodvscl F LMod X Base Scalar F U L B X · ˙ U L B
45 36 41 19 44 syl3anc φ X · ˙ U L B
46 1 4 3 frlmbasf I V X · ˙ U L B X · ˙ U L : I K
47 9 45 46 syl2anc φ X · ˙ U L : I K
48 47 ffnd φ X · ˙ U L Fn I
49 6 fvexi 0 ˙ V
50 49 a1i φ 0 ˙ V
51 suppvalfn X · ˙ U L Fn I I V 0 ˙ V X · ˙ U L supp 0 ˙ = x I | X · ˙ U L x 0 ˙
52 48 9 50 51 syl3anc φ X · ˙ U L supp 0 ˙ = x I | X · ˙ U L x 0 ˙
53 52 sseq1d φ X · ˙ U L supp 0 ˙ J x I | X · ˙ U L x 0 ˙ J
54 34 53 mtbird φ ¬ X · ˙ U L supp 0 ˙ J
55 54 intnand φ ¬ X · ˙ U L B X · ˙ U L supp 0 ˙ J
56 oveq1 x = X · ˙ U L x supp 0 ˙ = X · ˙ U L supp 0 ˙
57 56 sseq1d x = X · ˙ U L x supp 0 ˙ J X · ˙ U L supp 0 ˙ J
58 57 7 elrab2 X · ˙ U L C X · ˙ U L B X · ˙ U L supp 0 ˙ J
59 55 58 sylnibr φ ¬ X · ˙ U L C