| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmssuvc1.f |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
| 2 |
|
frlmssuvc1.u |
⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) |
| 3 |
|
frlmssuvc1.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
| 4 |
|
frlmssuvc1.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 5 |
|
frlmssuvc1.t |
⊢ · = ( ·𝑠 ‘ 𝐹 ) |
| 6 |
|
frlmssuvc1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 7 |
|
frlmssuvc1.c |
⊢ 𝐶 = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 supp 0 ) ⊆ 𝐽 } |
| 8 |
|
frlmssuvc1.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 9 |
|
frlmssuvc1.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 10 |
|
frlmssuvc1.j |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐼 ) |
| 11 |
|
frlmssuvc2.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐼 ∖ 𝐽 ) ) |
| 12 |
|
frlmssuvc2.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐾 ∖ { 0 } ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑥 = 𝐿 → ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) = ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝐿 ) ) |
| 14 |
13
|
neeq1d |
⊢ ( 𝑥 = 𝐿 → ( ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) ≠ 0 ↔ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝐿 ) ≠ 0 ) ) |
| 15 |
11
|
eldifad |
⊢ ( 𝜑 → 𝐿 ∈ 𝐼 ) |
| 16 |
12
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
| 17 |
2 1 3
|
uvcff |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑈 : 𝐼 ⟶ 𝐵 ) |
| 18 |
8 9 17
|
syl2anc |
⊢ ( 𝜑 → 𝑈 : 𝐼 ⟶ 𝐵 ) |
| 19 |
18 15
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝐿 ) ∈ 𝐵 ) |
| 20 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 21 |
1 3 4 9 16 19 15 5 20
|
frlmvscaval |
⊢ ( 𝜑 → ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝐿 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝐿 ) ‘ 𝐿 ) ) ) |
| 22 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 23 |
2 8 9 15 22
|
uvcvv1 |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝐿 ) ‘ 𝐿 ) = ( 1r ‘ 𝑅 ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑅 ) ( ( 𝑈 ‘ 𝐿 ) ‘ 𝐿 ) ) = ( 𝑋 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 25 |
4 20 22
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
| 26 |
8 16 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
| 27 |
21 24 26
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝐿 ) = 𝑋 ) |
| 28 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝐾 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
| 29 |
12 28
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 30 |
27 29
|
eqnetrd |
⊢ ( 𝜑 → ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝐿 ) ≠ 0 ) |
| 31 |
14 15 30
|
elrabd |
⊢ ( 𝜑 → 𝐿 ∈ { 𝑥 ∈ 𝐼 ∣ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) ≠ 0 } ) |
| 32 |
11
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝐿 ∈ 𝐽 ) |
| 33 |
|
nelss |
⊢ ( ( 𝐿 ∈ { 𝑥 ∈ 𝐼 ∣ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) ≠ 0 } ∧ ¬ 𝐿 ∈ 𝐽 ) → ¬ { 𝑥 ∈ 𝐼 ∣ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) ≠ 0 } ⊆ 𝐽 ) |
| 34 |
31 32 33
|
syl2anc |
⊢ ( 𝜑 → ¬ { 𝑥 ∈ 𝐼 ∣ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) ≠ 0 } ⊆ 𝐽 ) |
| 35 |
1
|
frlmlmod |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝐹 ∈ LMod ) |
| 36 |
8 9 35
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ LMod ) |
| 37 |
1
|
frlmsca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
| 38 |
8 9 37
|
syl2anc |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
| 39 |
38
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
| 40 |
4 39
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
| 41 |
16 40
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
| 42 |
|
eqid |
⊢ ( Scalar ‘ 𝐹 ) = ( Scalar ‘ 𝐹 ) |
| 43 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐹 ) ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) |
| 44 |
3 42 5 43
|
lmodvscl |
⊢ ( ( 𝐹 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ ( 𝑈 ‘ 𝐿 ) ∈ 𝐵 ) → ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ∈ 𝐵 ) |
| 45 |
36 41 19 44
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ∈ 𝐵 ) |
| 46 |
1 4 3
|
frlmbasf |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ∈ 𝐵 ) → ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) : 𝐼 ⟶ 𝐾 ) |
| 47 |
9 45 46
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) : 𝐼 ⟶ 𝐾 ) |
| 48 |
47
|
ffnd |
⊢ ( 𝜑 → ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) Fn 𝐼 ) |
| 49 |
6
|
fvexi |
⊢ 0 ∈ V |
| 50 |
49
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 51 |
|
suppvalfn |
⊢ ( ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ V ) → ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) ≠ 0 } ) |
| 52 |
48 9 50 51
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) ≠ 0 } ) |
| 53 |
52
|
sseq1d |
⊢ ( 𝜑 → ( ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) supp 0 ) ⊆ 𝐽 ↔ { 𝑥 ∈ 𝐼 ∣ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ‘ 𝑥 ) ≠ 0 } ⊆ 𝐽 ) ) |
| 54 |
34 53
|
mtbird |
⊢ ( 𝜑 → ¬ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) supp 0 ) ⊆ 𝐽 ) |
| 55 |
54
|
intnand |
⊢ ( 𝜑 → ¬ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ∈ 𝐵 ∧ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) supp 0 ) ⊆ 𝐽 ) ) |
| 56 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) → ( 𝑥 supp 0 ) = ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) supp 0 ) ) |
| 57 |
56
|
sseq1d |
⊢ ( 𝑥 = ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) → ( ( 𝑥 supp 0 ) ⊆ 𝐽 ↔ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) supp 0 ) ⊆ 𝐽 ) ) |
| 58 |
57 7
|
elrab2 |
⊢ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ∈ 𝐶 ↔ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ∈ 𝐵 ∧ ( ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) supp 0 ) ⊆ 𝐽 ) ) |
| 59 |
55 58
|
sylnibr |
⊢ ( 𝜑 → ¬ ( 𝑋 · ( 𝑈 ‘ 𝐿 ) ) ∈ 𝐶 ) |