Metamath Proof Explorer


Theorem frlmvscaval

Description: Coordinates of a scalar multiple with respect to a basis in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses frlmvscaval.y 𝑌 = ( 𝑅 freeLMod 𝐼 )
frlmvscaval.b 𝐵 = ( Base ‘ 𝑌 )
frlmvscaval.k 𝐾 = ( Base ‘ 𝑅 )
frlmvscaval.i ( 𝜑𝐼𝑊 )
frlmvscaval.a ( 𝜑𝐴𝐾 )
frlmvscaval.x ( 𝜑𝑋𝐵 )
frlmvscaval.j ( 𝜑𝐽𝐼 )
frlmvscaval.v = ( ·𝑠𝑌 )
frlmvscaval.t · = ( .r𝑅 )
Assertion frlmvscaval ( 𝜑 → ( ( 𝐴 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 frlmvscaval.y 𝑌 = ( 𝑅 freeLMod 𝐼 )
2 frlmvscaval.b 𝐵 = ( Base ‘ 𝑌 )
3 frlmvscaval.k 𝐾 = ( Base ‘ 𝑅 )
4 frlmvscaval.i ( 𝜑𝐼𝑊 )
5 frlmvscaval.a ( 𝜑𝐴𝐾 )
6 frlmvscaval.x ( 𝜑𝑋𝐵 )
7 frlmvscaval.j ( 𝜑𝐽𝐼 )
8 frlmvscaval.v = ( ·𝑠𝑌 )
9 frlmvscaval.t · = ( .r𝑅 )
10 1 2 3 4 5 6 8 9 frlmvscafval ( 𝜑 → ( 𝐴 𝑋 ) = ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) )
11 10 fveq1d ( 𝜑 → ( ( 𝐴 𝑋 ) ‘ 𝐽 ) = ( ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ‘ 𝐽 ) )
12 fnconstg ( 𝐴𝐾 → ( 𝐼 × { 𝐴 } ) Fn 𝐼 )
13 5 12 syl ( 𝜑 → ( 𝐼 × { 𝐴 } ) Fn 𝐼 )
14 1 3 2 frlmbasf ( ( 𝐼𝑊𝑋𝐵 ) → 𝑋 : 𝐼𝐾 )
15 4 6 14 syl2anc ( 𝜑𝑋 : 𝐼𝐾 )
16 15 ffnd ( 𝜑𝑋 Fn 𝐼 )
17 fnfvof ( ( ( ( 𝐼 × { 𝐴 } ) Fn 𝐼𝑋 Fn 𝐼 ) ∧ ( 𝐼𝑊𝐽𝐼 ) ) → ( ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ‘ 𝐽 ) = ( ( ( 𝐼 × { 𝐴 } ) ‘ 𝐽 ) · ( 𝑋𝐽 ) ) )
18 13 16 4 7 17 syl22anc ( 𝜑 → ( ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ‘ 𝐽 ) = ( ( ( 𝐼 × { 𝐴 } ) ‘ 𝐽 ) · ( 𝑋𝐽 ) ) )
19 fvconst2g ( ( 𝐴𝐾𝐽𝐼 ) → ( ( 𝐼 × { 𝐴 } ) ‘ 𝐽 ) = 𝐴 )
20 5 7 19 syl2anc ( 𝜑 → ( ( 𝐼 × { 𝐴 } ) ‘ 𝐽 ) = 𝐴 )
21 20 oveq1d ( 𝜑 → ( ( ( 𝐼 × { 𝐴 } ) ‘ 𝐽 ) · ( 𝑋𝐽 ) ) = ( 𝐴 · ( 𝑋𝐽 ) ) )
22 11 18 21 3eqtrd ( 𝜑 → ( ( 𝐴 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋𝐽 ) ) )