Metamath Proof Explorer


Theorem frlmlbs

Description: The unit vectors comprise a basis for a free module. (Contributed by Stefan O'Rear, 6-Feb-2015) (Proof shortened by AV, 21-Jul-2019)

Ref Expression
Hypotheses frlmlbs.f F = R freeLMod I
frlmlbs.u U = R unitVec I
frlmlbs.j J = LBasis F
Assertion frlmlbs R Ring I V ran U J

Proof

Step Hyp Ref Expression
1 frlmlbs.f F = R freeLMod I
2 frlmlbs.u U = R unitVec I
3 frlmlbs.j J = LBasis F
4 eqid Base F = Base F
5 2 1 4 uvcff R Ring I V U : I Base F
6 5 frnd R Ring I V ran U Base F
7 suppssdm a supp 0 R dom a
8 eqid Base R = Base R
9 1 8 4 frlmbasf I V a Base F a : I Base R
10 9 adantll R Ring I V a Base F a : I Base R
11 7 10 fssdm R Ring I V a Base F a supp 0 R I
12 11 ralrimiva R Ring I V a Base F a supp 0 R I
13 rabid2 Base F = a Base F | a supp 0 R I a Base F a supp 0 R I
14 12 13 sylibr R Ring I V Base F = a Base F | a supp 0 R I
15 ssid I I
16 eqid LSpan F = LSpan F
17 eqid 0 R = 0 R
18 eqid a Base F | a supp 0 R I = a Base F | a supp 0 R I
19 1 2 16 4 17 18 frlmsslsp R Ring I V I I LSpan F U I = a Base F | a supp 0 R I
20 15 19 mp3an3 R Ring I V LSpan F U I = a Base F | a supp 0 R I
21 ffn U : I Base F U Fn I
22 fnima U Fn I U I = ran U
23 5 21 22 3syl R Ring I V U I = ran U
24 23 fveq2d R Ring I V LSpan F U I = LSpan F ran U
25 14 20 24 3eqtr2rd R Ring I V LSpan F ran U = Base F
26 eqid F = F
27 eqid a Base F | a supp 0 R I c = a Base F | a supp 0 R I c
28 simpll R Ring I V c I b Base Scalar F 0 Scalar F R Ring
29 simplr R Ring I V c I b Base Scalar F 0 Scalar F I V
30 difssd R Ring I V c I b Base Scalar F 0 Scalar F I c I
31 vsnid c c
32 snssi c I c I
33 32 ad2antrl R Ring I V c I b Base Scalar F 0 Scalar F c I
34 dfss4 c I I I c = c
35 33 34 sylib R Ring I V c I b Base Scalar F 0 Scalar F I I c = c
36 31 35 eleqtrrid R Ring I V c I b Base Scalar F 0 Scalar F c I I c
37 1 frlmsca R Ring I V R = Scalar F
38 37 fveq2d R Ring I V Base R = Base Scalar F
39 37 fveq2d R Ring I V 0 R = 0 Scalar F
40 39 sneqd R Ring I V 0 R = 0 Scalar F
41 38 40 difeq12d R Ring I V Base R 0 R = Base Scalar F 0 Scalar F
42 41 eleq2d R Ring I V b Base R 0 R b Base Scalar F 0 Scalar F
43 42 biimpar R Ring I V b Base Scalar F 0 Scalar F b Base R 0 R
44 43 adantrl R Ring I V c I b Base Scalar F 0 Scalar F b Base R 0 R
45 1 2 4 8 26 17 27 28 29 30 36 44 frlmssuvc2 R Ring I V c I b Base Scalar F 0 Scalar F ¬ b F U c a Base F | a supp 0 R I c
46 17 8 ringelnzr R Ring b Base R 0 R R NzRing
47 28 44 46 syl2anc R Ring I V c I b Base Scalar F 0 Scalar F R NzRing
48 2 1 4 uvcf1 R NzRing I V U : I 1-1 Base F
49 47 29 48 syl2anc R Ring I V c I b Base Scalar F 0 Scalar F U : I 1-1 Base F
50 df-f1 U : I 1-1 Base F U : I Base F Fun U -1
51 50 simprbi U : I 1-1 Base F Fun U -1
52 imadif Fun U -1 U I c = U I U c
53 49 51 52 3syl R Ring I V c I b Base Scalar F 0 Scalar F U I c = U I U c
54 f1fn U : I 1-1 Base F U Fn I
55 49 54 22 3syl R Ring I V c I b Base Scalar F 0 Scalar F U I = ran U
56 49 54 syl R Ring I V c I b Base Scalar F 0 Scalar F U Fn I
57 simprl R Ring I V c I b Base Scalar F 0 Scalar F c I
58 fnsnfv U Fn I c I U c = U c
59 56 57 58 syl2anc R Ring I V c I b Base Scalar F 0 Scalar F U c = U c
60 59 eqcomd R Ring I V c I b Base Scalar F 0 Scalar F U c = U c
61 55 60 difeq12d R Ring I V c I b Base Scalar F 0 Scalar F U I U c = ran U U c
62 53 61 eqtr2d R Ring I V c I b Base Scalar F 0 Scalar F ran U U c = U I c
63 62 fveq2d R Ring I V c I b Base Scalar F 0 Scalar F LSpan F ran U U c = LSpan F U I c
64 1 2 16 4 17 27 frlmsslsp R Ring I V I c I LSpan F U I c = a Base F | a supp 0 R I c
65 28 29 30 64 syl3anc R Ring I V c I b Base Scalar F 0 Scalar F LSpan F U I c = a Base F | a supp 0 R I c
66 63 65 eqtrd R Ring I V c I b Base Scalar F 0 Scalar F LSpan F ran U U c = a Base F | a supp 0 R I c
67 45 66 neleqtrrd R Ring I V c I b Base Scalar F 0 Scalar F ¬ b F U c LSpan F ran U U c
68 67 ralrimivva R Ring I V c I b Base Scalar F 0 Scalar F ¬ b F U c LSpan F ran U U c
69 oveq2 a = U c b F a = b F U c
70 sneq a = U c a = U c
71 70 difeq2d a = U c ran U a = ran U U c
72 71 fveq2d a = U c LSpan F ran U a = LSpan F ran U U c
73 69 72 eleq12d a = U c b F a LSpan F ran U a b F U c LSpan F ran U U c
74 73 notbid a = U c ¬ b F a LSpan F ran U a ¬ b F U c LSpan F ran U U c
75 74 ralbidv a = U c b Base Scalar F 0 Scalar F ¬ b F a LSpan F ran U a b Base Scalar F 0 Scalar F ¬ b F U c LSpan F ran U U c
76 75 ralrn U Fn I a ran U b Base Scalar F 0 Scalar F ¬ b F a LSpan F ran U a c I b Base Scalar F 0 Scalar F ¬ b F U c LSpan F ran U U c
77 5 21 76 3syl R Ring I V a ran U b Base Scalar F 0 Scalar F ¬ b F a LSpan F ran U a c I b Base Scalar F 0 Scalar F ¬ b F U c LSpan F ran U U c
78 68 77 mpbird R Ring I V a ran U b Base Scalar F 0 Scalar F ¬ b F a LSpan F ran U a
79 1 ovexi F V
80 eqid Scalar F = Scalar F
81 eqid Base Scalar F = Base Scalar F
82 eqid 0 Scalar F = 0 Scalar F
83 4 80 26 81 3 16 82 islbs F V ran U J ran U Base F LSpan F ran U = Base F a ran U b Base Scalar F 0 Scalar F ¬ b F a LSpan F ran U a
84 79 83 ax-mp ran U J ran U Base F LSpan F ran U = Base F a ran U b Base Scalar F 0 Scalar F ¬ b F a LSpan F ran U a
85 6 25 78 84 syl3anbrc R Ring I V ran U J