Step |
Hyp |
Ref |
Expression |
1 |
|
lbslcic.f |
|- F = ( Scalar ` W ) |
2 |
|
lbslcic.j |
|- J = ( LBasis ` W ) |
3 |
|
simp3 |
|- ( ( W e. LMod /\ B e. J /\ I ~~ B ) -> I ~~ B ) |
4 |
|
bren |
|- ( I ~~ B <-> E. e e : I -1-1-onto-> B ) |
5 |
3 4
|
sylib |
|- ( ( W e. LMod /\ B e. J /\ I ~~ B ) -> E. e e : I -1-1-onto-> B ) |
6 |
|
eqid |
|- ( F freeLMod I ) = ( F freeLMod I ) |
7 |
|
eqid |
|- ( Base ` ( F freeLMod I ) ) = ( Base ` ( F freeLMod I ) ) |
8 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
9 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
10 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
11 |
|
eqid |
|- ( x e. ( Base ` ( F freeLMod I ) ) |-> ( W gsum ( x oF ( .s ` W ) e ) ) ) = ( x e. ( Base ` ( F freeLMod I ) ) |-> ( W gsum ( x oF ( .s ` W ) e ) ) ) |
12 |
|
simpl1 |
|- ( ( ( W e. LMod /\ B e. J /\ I ~~ B ) /\ e : I -1-1-onto-> B ) -> W e. LMod ) |
13 |
|
relen |
|- Rel ~~ |
14 |
13
|
brrelex1i |
|- ( I ~~ B -> I e. _V ) |
15 |
14
|
3ad2ant3 |
|- ( ( W e. LMod /\ B e. J /\ I ~~ B ) -> I e. _V ) |
16 |
15
|
adantr |
|- ( ( ( W e. LMod /\ B e. J /\ I ~~ B ) /\ e : I -1-1-onto-> B ) -> I e. _V ) |
17 |
1
|
a1i |
|- ( ( ( W e. LMod /\ B e. J /\ I ~~ B ) /\ e : I -1-1-onto-> B ) -> F = ( Scalar ` W ) ) |
18 |
|
f1ofo |
|- ( e : I -1-1-onto-> B -> e : I -onto-> B ) |
19 |
18
|
adantl |
|- ( ( ( W e. LMod /\ B e. J /\ I ~~ B ) /\ e : I -1-1-onto-> B ) -> e : I -onto-> B ) |
20 |
2
|
lbslinds |
|- J C_ ( LIndS ` W ) |
21 |
20
|
sseli |
|- ( B e. J -> B e. ( LIndS ` W ) ) |
22 |
21
|
3ad2ant2 |
|- ( ( W e. LMod /\ B e. J /\ I ~~ B ) -> B e. ( LIndS ` W ) ) |
23 |
22
|
adantr |
|- ( ( ( W e. LMod /\ B e. J /\ I ~~ B ) /\ e : I -1-1-onto-> B ) -> B e. ( LIndS ` W ) ) |
24 |
|
f1of1 |
|- ( e : I -1-1-onto-> B -> e : I -1-1-> B ) |
25 |
24
|
adantl |
|- ( ( ( W e. LMod /\ B e. J /\ I ~~ B ) /\ e : I -1-1-onto-> B ) -> e : I -1-1-> B ) |
26 |
|
f1linds |
|- ( ( W e. LMod /\ B e. ( LIndS ` W ) /\ e : I -1-1-> B ) -> e LIndF W ) |
27 |
12 23 25 26
|
syl3anc |
|- ( ( ( W e. LMod /\ B e. J /\ I ~~ B ) /\ e : I -1-1-onto-> B ) -> e LIndF W ) |
28 |
8 2 10
|
lbssp |
|- ( B e. J -> ( ( LSpan ` W ) ` B ) = ( Base ` W ) ) |
29 |
28
|
3ad2ant2 |
|- ( ( W e. LMod /\ B e. J /\ I ~~ B ) -> ( ( LSpan ` W ) ` B ) = ( Base ` W ) ) |
30 |
29
|
adantr |
|- ( ( ( W e. LMod /\ B e. J /\ I ~~ B ) /\ e : I -1-1-onto-> B ) -> ( ( LSpan ` W ) ` B ) = ( Base ` W ) ) |
31 |
6 7 8 9 10 11 12 16 17 19 27 30
|
indlcim |
|- ( ( ( W e. LMod /\ B e. J /\ I ~~ B ) /\ e : I -1-1-onto-> B ) -> ( x e. ( Base ` ( F freeLMod I ) ) |-> ( W gsum ( x oF ( .s ` W ) e ) ) ) e. ( ( F freeLMod I ) LMIso W ) ) |
32 |
|
lmimcnv |
|- ( ( x e. ( Base ` ( F freeLMod I ) ) |-> ( W gsum ( x oF ( .s ` W ) e ) ) ) e. ( ( F freeLMod I ) LMIso W ) -> `' ( x e. ( Base ` ( F freeLMod I ) ) |-> ( W gsum ( x oF ( .s ` W ) e ) ) ) e. ( W LMIso ( F freeLMod I ) ) ) |
33 |
|
brlmici |
|- ( `' ( x e. ( Base ` ( F freeLMod I ) ) |-> ( W gsum ( x oF ( .s ` W ) e ) ) ) e. ( W LMIso ( F freeLMod I ) ) -> W ~=m ( F freeLMod I ) ) |
34 |
31 32 33
|
3syl |
|- ( ( ( W e. LMod /\ B e. J /\ I ~~ B ) /\ e : I -1-1-onto-> B ) -> W ~=m ( F freeLMod I ) ) |
35 |
5 34
|
exlimddv |
|- ( ( W e. LMod /\ B e. J /\ I ~~ B ) -> W ~=m ( F freeLMod I ) ) |