Step |
Hyp |
Ref |
Expression |
1 |
|
lbslcic.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
lbslcic.j |
⊢ 𝐽 = ( LBasis ‘ 𝑊 ) |
3 |
|
simp3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵 ) → 𝐼 ≈ 𝐵 ) |
4 |
|
bren |
⊢ ( 𝐼 ≈ 𝐵 ↔ ∃ 𝑒 𝑒 : 𝐼 –1-1-onto→ 𝐵 ) |
5 |
3 4
|
sylib |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵 ) → ∃ 𝑒 𝑒 : 𝐼 –1-1-onto→ 𝐵 ) |
6 |
|
eqid |
⊢ ( 𝐹 freeLMod 𝐼 ) = ( 𝐹 freeLMod 𝐼 ) |
7 |
|
eqid |
⊢ ( Base ‘ ( 𝐹 freeLMod 𝐼 ) ) = ( Base ‘ ( 𝐹 freeLMod 𝐼 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
10 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ ( 𝐹 freeLMod 𝐼 ) ) ↦ ( 𝑊 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ) ) = ( 𝑥 ∈ ( Base ‘ ( 𝐹 freeLMod 𝐼 ) ) ↦ ( 𝑊 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ) ) |
12 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵 ) ∧ 𝑒 : 𝐼 –1-1-onto→ 𝐵 ) → 𝑊 ∈ LMod ) |
13 |
|
relen |
⊢ Rel ≈ |
14 |
13
|
brrelex1i |
⊢ ( 𝐼 ≈ 𝐵 → 𝐼 ∈ V ) |
15 |
14
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵 ) → 𝐼 ∈ V ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵 ) ∧ 𝑒 : 𝐼 –1-1-onto→ 𝐵 ) → 𝐼 ∈ V ) |
17 |
1
|
a1i |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵 ) ∧ 𝑒 : 𝐼 –1-1-onto→ 𝐵 ) → 𝐹 = ( Scalar ‘ 𝑊 ) ) |
18 |
|
f1ofo |
⊢ ( 𝑒 : 𝐼 –1-1-onto→ 𝐵 → 𝑒 : 𝐼 –onto→ 𝐵 ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵 ) ∧ 𝑒 : 𝐼 –1-1-onto→ 𝐵 ) → 𝑒 : 𝐼 –onto→ 𝐵 ) |
20 |
2
|
lbslinds |
⊢ 𝐽 ⊆ ( LIndS ‘ 𝑊 ) |
21 |
20
|
sseli |
⊢ ( 𝐵 ∈ 𝐽 → 𝐵 ∈ ( LIndS ‘ 𝑊 ) ) |
22 |
21
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵 ) → 𝐵 ∈ ( LIndS ‘ 𝑊 ) ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵 ) ∧ 𝑒 : 𝐼 –1-1-onto→ 𝐵 ) → 𝐵 ∈ ( LIndS ‘ 𝑊 ) ) |
24 |
|
f1of1 |
⊢ ( 𝑒 : 𝐼 –1-1-onto→ 𝐵 → 𝑒 : 𝐼 –1-1→ 𝐵 ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵 ) ∧ 𝑒 : 𝐼 –1-1-onto→ 𝐵 ) → 𝑒 : 𝐼 –1-1→ 𝐵 ) |
26 |
|
f1linds |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ ( LIndS ‘ 𝑊 ) ∧ 𝑒 : 𝐼 –1-1→ 𝐵 ) → 𝑒 LIndF 𝑊 ) |
27 |
12 23 25 26
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵 ) ∧ 𝑒 : 𝐼 –1-1-onto→ 𝐵 ) → 𝑒 LIndF 𝑊 ) |
28 |
8 2 10
|
lbssp |
⊢ ( 𝐵 ∈ 𝐽 → ( ( LSpan ‘ 𝑊 ) ‘ 𝐵 ) = ( Base ‘ 𝑊 ) ) |
29 |
28
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵 ) → ( ( LSpan ‘ 𝑊 ) ‘ 𝐵 ) = ( Base ‘ 𝑊 ) ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵 ) ∧ 𝑒 : 𝐼 –1-1-onto→ 𝐵 ) → ( ( LSpan ‘ 𝑊 ) ‘ 𝐵 ) = ( Base ‘ 𝑊 ) ) |
31 |
6 7 8 9 10 11 12 16 17 19 27 30
|
indlcim |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵 ) ∧ 𝑒 : 𝐼 –1-1-onto→ 𝐵 ) → ( 𝑥 ∈ ( Base ‘ ( 𝐹 freeLMod 𝐼 ) ) ↦ ( 𝑊 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ) ) ∈ ( ( 𝐹 freeLMod 𝐼 ) LMIso 𝑊 ) ) |
32 |
|
lmimcnv |
⊢ ( ( 𝑥 ∈ ( Base ‘ ( 𝐹 freeLMod 𝐼 ) ) ↦ ( 𝑊 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ) ) ∈ ( ( 𝐹 freeLMod 𝐼 ) LMIso 𝑊 ) → ◡ ( 𝑥 ∈ ( Base ‘ ( 𝐹 freeLMod 𝐼 ) ) ↦ ( 𝑊 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ) ) ∈ ( 𝑊 LMIso ( 𝐹 freeLMod 𝐼 ) ) ) |
33 |
|
brlmici |
⊢ ( ◡ ( 𝑥 ∈ ( Base ‘ ( 𝐹 freeLMod 𝐼 ) ) ↦ ( 𝑊 Σg ( 𝑥 ∘f ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ) ) ∈ ( 𝑊 LMIso ( 𝐹 freeLMod 𝐼 ) ) → 𝑊 ≃𝑚 ( 𝐹 freeLMod 𝐼 ) ) |
34 |
31 32 33
|
3syl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵 ) ∧ 𝑒 : 𝐼 –1-1-onto→ 𝐵 ) → 𝑊 ≃𝑚 ( 𝐹 freeLMod 𝐼 ) ) |
35 |
5 34
|
exlimddv |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵 ) → 𝑊 ≃𝑚 ( 𝐹 freeLMod 𝐼 ) ) |