Description: A module with a basis is isomorphic to a free module with the same cardinality. (Contributed by Stefan O'Rear, 26-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lbslcic.f | |
|
lbslcic.j | |
||
Assertion | lbslcic | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbslcic.f | |
|
2 | lbslcic.j | |
|
3 | simp3 | |
|
4 | bren | |
|
5 | 3 4 | sylib | |
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | simpl1 | |
|
13 | relen | |
|
14 | 13 | brrelex1i | |
15 | 14 | 3ad2ant3 | |
16 | 15 | adantr | |
17 | 1 | a1i | |
18 | f1ofo | |
|
19 | 18 | adantl | |
20 | 2 | lbslinds | |
21 | 20 | sseli | |
22 | 21 | 3ad2ant2 | |
23 | 22 | adantr | |
24 | f1of1 | |
|
25 | 24 | adantl | |
26 | f1linds | |
|
27 | 12 23 25 26 | syl3anc | |
28 | 8 2 10 | lbssp | |
29 | 28 | 3ad2ant2 | |
30 | 29 | adantr | |
31 | 6 7 8 9 10 11 12 16 17 19 27 30 | indlcim | |
32 | lmimcnv | |
|
33 | brlmici | |
|
34 | 31 32 33 | 3syl | |
35 | 5 34 | exlimddv | |