Metamath Proof Explorer


Theorem lbslcic

Description: A module with a basis is isomorphic to a free module with the same cardinality. (Contributed by Stefan O'Rear, 26-Feb-2015)

Ref Expression
Hypotheses lbslcic.f F=ScalarW
lbslcic.j J=LBasisW
Assertion lbslcic WLModBJIBW𝑚FfreeLModI

Proof

Step Hyp Ref Expression
1 lbslcic.f F=ScalarW
2 lbslcic.j J=LBasisW
3 simp3 WLModBJIBIB
4 bren IBee:I1-1 ontoB
5 3 4 sylib WLModBJIBee:I1-1 ontoB
6 eqid FfreeLModI=FfreeLModI
7 eqid BaseFfreeLModI=BaseFfreeLModI
8 eqid BaseW=BaseW
9 eqid W=W
10 eqid LSpanW=LSpanW
11 eqid xBaseFfreeLModIWxWfe=xBaseFfreeLModIWxWfe
12 simpl1 WLModBJIBe:I1-1 ontoBWLMod
13 relen Rel
14 13 brrelex1i IBIV
15 14 3ad2ant3 WLModBJIBIV
16 15 adantr WLModBJIBe:I1-1 ontoBIV
17 1 a1i WLModBJIBe:I1-1 ontoBF=ScalarW
18 f1ofo e:I1-1 ontoBe:IontoB
19 18 adantl WLModBJIBe:I1-1 ontoBe:IontoB
20 2 lbslinds JLIndSW
21 20 sseli BJBLIndSW
22 21 3ad2ant2 WLModBJIBBLIndSW
23 22 adantr WLModBJIBe:I1-1 ontoBBLIndSW
24 f1of1 e:I1-1 ontoBe:I1-1B
25 24 adantl WLModBJIBe:I1-1 ontoBe:I1-1B
26 f1linds WLModBLIndSWe:I1-1BeLIndFW
27 12 23 25 26 syl3anc WLModBJIBe:I1-1 ontoBeLIndFW
28 8 2 10 lbssp BJLSpanWB=BaseW
29 28 3ad2ant2 WLModBJIBLSpanWB=BaseW
30 29 adantr WLModBJIBe:I1-1 ontoBLSpanWB=BaseW
31 6 7 8 9 10 11 12 16 17 19 27 30 indlcim WLModBJIBe:I1-1 ontoBxBaseFfreeLModIWxWfeFfreeLModILMIsoW
32 lmimcnv xBaseFfreeLModIWxWfeFfreeLModILMIsoWxBaseFfreeLModIWxWfe-1WLMIsoFfreeLModI
33 brlmici xBaseFfreeLModIWxWfe-1WLMIsoFfreeLModIW𝑚FfreeLModI
34 31 32 33 3syl WLModBJIBe:I1-1 ontoBW𝑚FfreeLModI
35 5 34 exlimddv WLModBJIBW𝑚FfreeLModI