Metamath Proof Explorer


Theorem lbslcic

Description: A module with a basis is isomorphic to a free module with the same cardinality. (Contributed by Stefan O'Rear, 26-Feb-2015)

Ref Expression
Hypotheses lbslcic.f F = Scalar W
lbslcic.j J = LBasis W
Assertion lbslcic W LMod B J I B W 𝑚 F freeLMod I

Proof

Step Hyp Ref Expression
1 lbslcic.f F = Scalar W
2 lbslcic.j J = LBasis W
3 simp3 W LMod B J I B I B
4 bren I B e e : I 1-1 onto B
5 3 4 sylib W LMod B J I B e e : I 1-1 onto B
6 eqid F freeLMod I = F freeLMod I
7 eqid Base F freeLMod I = Base F freeLMod I
8 eqid Base W = Base W
9 eqid W = W
10 eqid LSpan W = LSpan W
11 eqid x Base F freeLMod I W x W f e = x Base F freeLMod I W x W f e
12 simpl1 W LMod B J I B e : I 1-1 onto B W LMod
13 relen Rel
14 13 brrelex1i I B I V
15 14 3ad2ant3 W LMod B J I B I V
16 15 adantr W LMod B J I B e : I 1-1 onto B I V
17 1 a1i W LMod B J I B e : I 1-1 onto B F = Scalar W
18 f1ofo e : I 1-1 onto B e : I onto B
19 18 adantl W LMod B J I B e : I 1-1 onto B e : I onto B
20 2 lbslinds J LIndS W
21 20 sseli B J B LIndS W
22 21 3ad2ant2 W LMod B J I B B LIndS W
23 22 adantr W LMod B J I B e : I 1-1 onto B B LIndS W
24 f1of1 e : I 1-1 onto B e : I 1-1 B
25 24 adantl W LMod B J I B e : I 1-1 onto B e : I 1-1 B
26 f1linds W LMod B LIndS W e : I 1-1 B e LIndF W
27 12 23 25 26 syl3anc W LMod B J I B e : I 1-1 onto B e LIndF W
28 8 2 10 lbssp B J LSpan W B = Base W
29 28 3ad2ant2 W LMod B J I B LSpan W B = Base W
30 29 adantr W LMod B J I B e : I 1-1 onto B LSpan W B = Base W
31 6 7 8 9 10 11 12 16 17 19 27 30 indlcim W LMod B J I B e : I 1-1 onto B x Base F freeLMod I W x W f e F freeLMod I LMIso W
32 lmimcnv x Base F freeLMod I W x W f e F freeLMod I LMIso W x Base F freeLMod I W x W f e -1 W LMIso F freeLMod I
33 brlmici x Base F freeLMod I W x W f e -1 W LMIso F freeLMod I W 𝑚 F freeLMod I
34 31 32 33 3syl W LMod B J I B e : I 1-1 onto B W 𝑚 F freeLMod I
35 5 34 exlimddv W LMod B J I B W 𝑚 F freeLMod I