Description: Prove isomorphic by an explicit isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brlmici | ⊢ ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) → 𝑅 ≃𝑚 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | ⊢ ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) → ( 𝑅 LMIso 𝑆 ) ≠ ∅ ) | |
| 2 | brlmic | ⊢ ( 𝑅 ≃𝑚 𝑆 ↔ ( 𝑅 LMIso 𝑆 ) ≠ ∅ ) | |
| 3 | 1 2 | sylibr | ⊢ ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) → 𝑅 ≃𝑚 𝑆 ) |