| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indlcim.f |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
| 2 |
|
indlcim.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
| 3 |
|
indlcim.c |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
| 4 |
|
indlcim.v |
⊢ · = ( ·𝑠 ‘ 𝑇 ) |
| 5 |
|
indlcim.n |
⊢ 𝑁 = ( LSpan ‘ 𝑇 ) |
| 6 |
|
indlcim.e |
⊢ 𝐸 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑇 Σg ( 𝑥 ∘f · 𝐴 ) ) ) |
| 7 |
|
indlcim.t |
⊢ ( 𝜑 → 𝑇 ∈ LMod ) |
| 8 |
|
indlcim.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) |
| 9 |
|
indlcim.r |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑇 ) ) |
| 10 |
|
indlcim.a |
⊢ ( 𝜑 → 𝐴 : 𝐼 –onto→ 𝐽 ) |
| 11 |
|
indlcim.l |
⊢ ( 𝜑 → 𝐴 LIndF 𝑇 ) |
| 12 |
|
indlcim.s |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝐽 ) = 𝐶 ) |
| 13 |
|
fofn |
⊢ ( 𝐴 : 𝐼 –onto→ 𝐽 → 𝐴 Fn 𝐼 ) |
| 14 |
10 13
|
syl |
⊢ ( 𝜑 → 𝐴 Fn 𝐼 ) |
| 15 |
3
|
lindff |
⊢ ( ( 𝐴 LIndF 𝑇 ∧ 𝑇 ∈ LMod ) → 𝐴 : dom 𝐴 ⟶ 𝐶 ) |
| 16 |
11 7 15
|
syl2anc |
⊢ ( 𝜑 → 𝐴 : dom 𝐴 ⟶ 𝐶 ) |
| 17 |
16
|
frnd |
⊢ ( 𝜑 → ran 𝐴 ⊆ 𝐶 ) |
| 18 |
|
df-f |
⊢ ( 𝐴 : 𝐼 ⟶ 𝐶 ↔ ( 𝐴 Fn 𝐼 ∧ ran 𝐴 ⊆ 𝐶 ) ) |
| 19 |
14 17 18
|
sylanbrc |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐶 ) |
| 20 |
1 2 3 4 6 7 8 9 19
|
frlmup1 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐹 LMHom 𝑇 ) ) |
| 21 |
1 2 3 4 6 7 8 9 19
|
islindf5 |
⊢ ( 𝜑 → ( 𝐴 LIndF 𝑇 ↔ 𝐸 : 𝐵 –1-1→ 𝐶 ) ) |
| 22 |
11 21
|
mpbid |
⊢ ( 𝜑 → 𝐸 : 𝐵 –1-1→ 𝐶 ) |
| 23 |
1 2 3 4 6 7 8 9 19 5
|
frlmup3 |
⊢ ( 𝜑 → ran 𝐸 = ( 𝑁 ‘ ran 𝐴 ) ) |
| 24 |
|
forn |
⊢ ( 𝐴 : 𝐼 –onto→ 𝐽 → ran 𝐴 = 𝐽 ) |
| 25 |
10 24
|
syl |
⊢ ( 𝜑 → ran 𝐴 = 𝐽 ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝜑 → ( 𝑁 ‘ ran 𝐴 ) = ( 𝑁 ‘ 𝐽 ) ) |
| 27 |
23 26 12
|
3eqtrd |
⊢ ( 𝜑 → ran 𝐸 = 𝐶 ) |
| 28 |
|
dff1o5 |
⊢ ( 𝐸 : 𝐵 –1-1-onto→ 𝐶 ↔ ( 𝐸 : 𝐵 –1-1→ 𝐶 ∧ ran 𝐸 = 𝐶 ) ) |
| 29 |
22 27 28
|
sylanbrc |
⊢ ( 𝜑 → 𝐸 : 𝐵 –1-1-onto→ 𝐶 ) |
| 30 |
2 3
|
islmim |
⊢ ( 𝐸 ∈ ( 𝐹 LMIso 𝑇 ) ↔ ( 𝐸 ∈ ( 𝐹 LMHom 𝑇 ) ∧ 𝐸 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| 31 |
20 29 30
|
sylanbrc |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐹 LMIso 𝑇 ) ) |