Metamath Proof Explorer


Theorem frlmup3

Description: The range of such an evaluation map is the finite linear combinations of the target vectors and also the span of the target vectors. (Contributed by Stefan O'Rear, 6-Feb-2015)

Ref Expression
Hypotheses frlmup.f 𝐹 = ( 𝑅 freeLMod 𝐼 )
frlmup.b 𝐵 = ( Base ‘ 𝐹 )
frlmup.c 𝐶 = ( Base ‘ 𝑇 )
frlmup.v · = ( ·𝑠𝑇 )
frlmup.e 𝐸 = ( 𝑥𝐵 ↦ ( 𝑇 Σg ( 𝑥f · 𝐴 ) ) )
frlmup.t ( 𝜑𝑇 ∈ LMod )
frlmup.i ( 𝜑𝐼𝑋 )
frlmup.r ( 𝜑𝑅 = ( Scalar ‘ 𝑇 ) )
frlmup.a ( 𝜑𝐴 : 𝐼𝐶 )
frlmup.k 𝐾 = ( LSpan ‘ 𝑇 )
Assertion frlmup3 ( 𝜑 → ran 𝐸 = ( 𝐾 ‘ ran 𝐴 ) )

Proof

Step Hyp Ref Expression
1 frlmup.f 𝐹 = ( 𝑅 freeLMod 𝐼 )
2 frlmup.b 𝐵 = ( Base ‘ 𝐹 )
3 frlmup.c 𝐶 = ( Base ‘ 𝑇 )
4 frlmup.v · = ( ·𝑠𝑇 )
5 frlmup.e 𝐸 = ( 𝑥𝐵 ↦ ( 𝑇 Σg ( 𝑥f · 𝐴 ) ) )
6 frlmup.t ( 𝜑𝑇 ∈ LMod )
7 frlmup.i ( 𝜑𝐼𝑋 )
8 frlmup.r ( 𝜑𝑅 = ( Scalar ‘ 𝑇 ) )
9 frlmup.a ( 𝜑𝐴 : 𝐼𝐶 )
10 frlmup.k 𝐾 = ( LSpan ‘ 𝑇 )
11 1 2 3 4 5 6 7 8 9 frlmup1 ( 𝜑𝐸 ∈ ( 𝐹 LMHom 𝑇 ) )
12 eqid ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 )
13 12 lmodring ( 𝑇 ∈ LMod → ( Scalar ‘ 𝑇 ) ∈ Ring )
14 6 13 syl ( 𝜑 → ( Scalar ‘ 𝑇 ) ∈ Ring )
15 8 14 eqeltrd ( 𝜑𝑅 ∈ Ring )
16 eqid ( 𝑅 unitVec 𝐼 ) = ( 𝑅 unitVec 𝐼 )
17 16 1 2 uvcff ( ( 𝑅 ∈ Ring ∧ 𝐼𝑋 ) → ( 𝑅 unitVec 𝐼 ) : 𝐼𝐵 )
18 15 7 17 syl2anc ( 𝜑 → ( 𝑅 unitVec 𝐼 ) : 𝐼𝐵 )
19 18 frnd ( 𝜑 → ran ( 𝑅 unitVec 𝐼 ) ⊆ 𝐵 )
20 eqid ( LSpan ‘ 𝐹 ) = ( LSpan ‘ 𝐹 )
21 2 20 10 lmhmlsp ( ( 𝐸 ∈ ( 𝐹 LMHom 𝑇 ) ∧ ran ( 𝑅 unitVec 𝐼 ) ⊆ 𝐵 ) → ( 𝐸 “ ( ( LSpan ‘ 𝐹 ) ‘ ran ( 𝑅 unitVec 𝐼 ) ) ) = ( 𝐾 ‘ ( 𝐸 “ ran ( 𝑅 unitVec 𝐼 ) ) ) )
22 11 19 21 syl2anc ( 𝜑 → ( 𝐸 “ ( ( LSpan ‘ 𝐹 ) ‘ ran ( 𝑅 unitVec 𝐼 ) ) ) = ( 𝐾 ‘ ( 𝐸 “ ran ( 𝑅 unitVec 𝐼 ) ) ) )
23 2 3 lmhmf ( 𝐸 ∈ ( 𝐹 LMHom 𝑇 ) → 𝐸 : 𝐵𝐶 )
24 11 23 syl ( 𝜑𝐸 : 𝐵𝐶 )
25 24 ffnd ( 𝜑𝐸 Fn 𝐵 )
26 fnima ( 𝐸 Fn 𝐵 → ( 𝐸𝐵 ) = ran 𝐸 )
27 25 26 syl ( 𝜑 → ( 𝐸𝐵 ) = ran 𝐸 )
28 eqid ( LBasis ‘ 𝐹 ) = ( LBasis ‘ 𝐹 )
29 1 16 28 frlmlbs ( ( 𝑅 ∈ Ring ∧ 𝐼𝑋 ) → ran ( 𝑅 unitVec 𝐼 ) ∈ ( LBasis ‘ 𝐹 ) )
30 15 7 29 syl2anc ( 𝜑 → ran ( 𝑅 unitVec 𝐼 ) ∈ ( LBasis ‘ 𝐹 ) )
31 2 28 20 lbssp ( ran ( 𝑅 unitVec 𝐼 ) ∈ ( LBasis ‘ 𝐹 ) → ( ( LSpan ‘ 𝐹 ) ‘ ran ( 𝑅 unitVec 𝐼 ) ) = 𝐵 )
32 30 31 syl ( 𝜑 → ( ( LSpan ‘ 𝐹 ) ‘ ran ( 𝑅 unitVec 𝐼 ) ) = 𝐵 )
33 32 eqcomd ( 𝜑𝐵 = ( ( LSpan ‘ 𝐹 ) ‘ ran ( 𝑅 unitVec 𝐼 ) ) )
34 33 imaeq2d ( 𝜑 → ( 𝐸𝐵 ) = ( 𝐸 “ ( ( LSpan ‘ 𝐹 ) ‘ ran ( 𝑅 unitVec 𝐼 ) ) ) )
35 27 34 eqtr3d ( 𝜑 → ran 𝐸 = ( 𝐸 “ ( ( LSpan ‘ 𝐹 ) ‘ ran ( 𝑅 unitVec 𝐼 ) ) ) )
36 imaco ( ( 𝐸 ∘ ( 𝑅 unitVec 𝐼 ) ) “ 𝐼 ) = ( 𝐸 “ ( ( 𝑅 unitVec 𝐼 ) “ 𝐼 ) )
37 9 ffnd ( 𝜑𝐴 Fn 𝐼 )
38 18 ffnd ( 𝜑 → ( 𝑅 unitVec 𝐼 ) Fn 𝐼 )
39 fnco ( ( 𝐸 Fn 𝐵 ∧ ( 𝑅 unitVec 𝐼 ) Fn 𝐼 ∧ ran ( 𝑅 unitVec 𝐼 ) ⊆ 𝐵 ) → ( 𝐸 ∘ ( 𝑅 unitVec 𝐼 ) ) Fn 𝐼 )
40 25 38 19 39 syl3anc ( 𝜑 → ( 𝐸 ∘ ( 𝑅 unitVec 𝐼 ) ) Fn 𝐼 )
41 fvco2 ( ( ( 𝑅 unitVec 𝐼 ) Fn 𝐼𝑢𝐼 ) → ( ( 𝐸 ∘ ( 𝑅 unitVec 𝐼 ) ) ‘ 𝑢 ) = ( 𝐸 ‘ ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑢 ) ) )
42 38 41 sylan ( ( 𝜑𝑢𝐼 ) → ( ( 𝐸 ∘ ( 𝑅 unitVec 𝐼 ) ) ‘ 𝑢 ) = ( 𝐸 ‘ ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑢 ) ) )
43 6 adantr ( ( 𝜑𝑢𝐼 ) → 𝑇 ∈ LMod )
44 7 adantr ( ( 𝜑𝑢𝐼 ) → 𝐼𝑋 )
45 8 adantr ( ( 𝜑𝑢𝐼 ) → 𝑅 = ( Scalar ‘ 𝑇 ) )
46 9 adantr ( ( 𝜑𝑢𝐼 ) → 𝐴 : 𝐼𝐶 )
47 simpr ( ( 𝜑𝑢𝐼 ) → 𝑢𝐼 )
48 1 2 3 4 5 43 44 45 46 47 16 frlmup2 ( ( 𝜑𝑢𝐼 ) → ( 𝐸 ‘ ( ( 𝑅 unitVec 𝐼 ) ‘ 𝑢 ) ) = ( 𝐴𝑢 ) )
49 42 48 eqtr2d ( ( 𝜑𝑢𝐼 ) → ( 𝐴𝑢 ) = ( ( 𝐸 ∘ ( 𝑅 unitVec 𝐼 ) ) ‘ 𝑢 ) )
50 37 40 49 eqfnfvd ( 𝜑𝐴 = ( 𝐸 ∘ ( 𝑅 unitVec 𝐼 ) ) )
51 50 imaeq1d ( 𝜑 → ( 𝐴𝐼 ) = ( ( 𝐸 ∘ ( 𝑅 unitVec 𝐼 ) ) “ 𝐼 ) )
52 fnima ( 𝐴 Fn 𝐼 → ( 𝐴𝐼 ) = ran 𝐴 )
53 37 52 syl ( 𝜑 → ( 𝐴𝐼 ) = ran 𝐴 )
54 51 53 eqtr3d ( 𝜑 → ( ( 𝐸 ∘ ( 𝑅 unitVec 𝐼 ) ) “ 𝐼 ) = ran 𝐴 )
55 fnima ( ( 𝑅 unitVec 𝐼 ) Fn 𝐼 → ( ( 𝑅 unitVec 𝐼 ) “ 𝐼 ) = ran ( 𝑅 unitVec 𝐼 ) )
56 38 55 syl ( 𝜑 → ( ( 𝑅 unitVec 𝐼 ) “ 𝐼 ) = ran ( 𝑅 unitVec 𝐼 ) )
57 56 imaeq2d ( 𝜑 → ( 𝐸 “ ( ( 𝑅 unitVec 𝐼 ) “ 𝐼 ) ) = ( 𝐸 “ ran ( 𝑅 unitVec 𝐼 ) ) )
58 36 54 57 3eqtr3a ( 𝜑 → ran 𝐴 = ( 𝐸 “ ran ( 𝑅 unitVec 𝐼 ) ) )
59 58 fveq2d ( 𝜑 → ( 𝐾 ‘ ran 𝐴 ) = ( 𝐾 ‘ ( 𝐸 “ ran ( 𝑅 unitVec 𝐼 ) ) ) )
60 22 35 59 3eqtr4d ( 𝜑 → ran 𝐸 = ( 𝐾 ‘ ran 𝐴 ) )