| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uvcf1o.u |
⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) |
| 2 |
1
|
ovexi |
⊢ 𝑈 ∈ V |
| 3 |
2
|
a1i |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) → 𝑈 ∈ V ) |
| 4 |
1
|
uvcf1o |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) → 𝑈 : 𝐼 –1-1-onto→ ran 𝑈 ) |
| 5 |
|
f1oeq1 |
⊢ ( 𝑈 = 𝑢 → ( 𝑈 : 𝐼 –1-1-onto→ ran 𝑈 ↔ 𝑢 : 𝐼 –1-1-onto→ ran 𝑈 ) ) |
| 6 |
5
|
eqcoms |
⊢ ( 𝑢 = 𝑈 → ( 𝑈 : 𝐼 –1-1-onto→ ran 𝑈 ↔ 𝑢 : 𝐼 –1-1-onto→ ran 𝑈 ) ) |
| 7 |
6
|
biimpd |
⊢ ( 𝑢 = 𝑈 → ( 𝑈 : 𝐼 –1-1-onto→ ran 𝑈 → 𝑢 : 𝐼 –1-1-onto→ ran 𝑈 ) ) |
| 8 |
7
|
a1i |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) → ( 𝑢 = 𝑈 → ( 𝑈 : 𝐼 –1-1-onto→ ran 𝑈 → 𝑢 : 𝐼 –1-1-onto→ ran 𝑈 ) ) ) |
| 9 |
4 8
|
syl7 |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) → ( 𝑢 = 𝑈 → ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) → 𝑢 : 𝐼 –1-1-onto→ ran 𝑈 ) ) ) |
| 10 |
9
|
imp |
⊢ ( ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑢 = 𝑈 ) → ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) → 𝑢 : 𝐼 –1-1-onto→ ran 𝑈 ) ) |
| 11 |
3 10
|
spcimedv |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) → ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) → ∃ 𝑢 𝑢 : 𝐼 –1-1-onto→ ran 𝑈 ) ) |
| 12 |
11
|
pm2.43i |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) → ∃ 𝑢 𝑢 : 𝐼 –1-1-onto→ ran 𝑈 ) |
| 13 |
|
bren |
⊢ ( 𝐼 ≈ ran 𝑈 ↔ ∃ 𝑢 𝑢 : 𝐼 –1-1-onto→ ran 𝑈 ) |
| 14 |
12 13
|
sylibr |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) → 𝐼 ≈ ran 𝑈 ) |