Description: In a nonzero ring, the mapping of the index set of a free module onto the unit vectors of the free module is a 1-1 onto function. (Contributed by AV, 10-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uvcf1o.u | ⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) | |
Assertion | uvcf1o | ⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) → 𝑈 : 𝐼 –1-1-onto→ ran 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvcf1o.u | ⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) | |
2 | eqid | ⊢ ( 𝑅 freeLMod 𝐼 ) = ( 𝑅 freeLMod 𝐼 ) | |
3 | eqid | ⊢ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) | |
4 | 1 2 3 | uvcf1 | ⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) → 𝑈 : 𝐼 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) ) |
5 | f1f1orn | ⊢ ( 𝑈 : 𝐼 –1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) → 𝑈 : 𝐼 –1-1-onto→ ran 𝑈 ) | |
6 | 4 5 | syl | ⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ) → 𝑈 : 𝐼 –1-1-onto→ ran 𝑈 ) |