Metamath Proof Explorer


Theorem uvcf1o

Description: In a nonzero ring, the mapping of the index set of a free module onto the unit vectors of the free module is a 1-1 onto function. (Contributed by AV, 10-Mar-2019)

Ref Expression
Hypothesis uvcf1o.u 𝑈 = ( 𝑅 unitVec 𝐼 )
Assertion uvcf1o ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) → 𝑈 : 𝐼1-1-onto→ ran 𝑈 )

Proof

Step Hyp Ref Expression
1 uvcf1o.u 𝑈 = ( 𝑅 unitVec 𝐼 )
2 eqid ( 𝑅 freeLMod 𝐼 ) = ( 𝑅 freeLMod 𝐼 )
3 eqid ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) = ( Base ‘ ( 𝑅 freeLMod 𝐼 ) )
4 1 2 3 uvcf1 ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) → 𝑈 : 𝐼1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) )
5 f1f1orn ( 𝑈 : 𝐼1-1→ ( Base ‘ ( 𝑅 freeLMod 𝐼 ) ) → 𝑈 : 𝐼1-1-onto→ ran 𝑈 )
6 4 5 syl ( ( 𝑅 ∈ NzRing ∧ 𝐼𝑊 ) → 𝑈 : 𝐼1-1-onto→ ran 𝑈 )