| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 2 | 1 | neii |  |-  -. 1 = 0 | 
						
							| 3 |  | eqeq1 |  |-  ( 1 = ( A mod P ) -> ( 1 = 0 <-> ( A mod P ) = 0 ) ) | 
						
							| 4 | 3 | eqcoms |  |-  ( ( A mod P ) = 1 -> ( 1 = 0 <-> ( A mod P ) = 0 ) ) | 
						
							| 5 | 2 4 | mtbii |  |-  ( ( A mod P ) = 1 -> -. ( A mod P ) = 0 ) | 
						
							| 6 | 5 | a1i |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( ( A mod P ) = 1 -> -. ( A mod P ) = 0 ) ) | 
						
							| 7 |  | modprm1div |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( ( A mod P ) = 1 <-> P || ( A - 1 ) ) ) | 
						
							| 8 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 9 |  | dvdsval3 |  |-  ( ( P e. NN /\ A e. ZZ ) -> ( P || A <-> ( A mod P ) = 0 ) ) | 
						
							| 10 | 8 9 | sylan |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( P || A <-> ( A mod P ) = 0 ) ) | 
						
							| 11 | 10 | bicomd |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( ( A mod P ) = 0 <-> P || A ) ) | 
						
							| 12 | 11 | notbid |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( -. ( A mod P ) = 0 <-> -. P || A ) ) | 
						
							| 13 | 6 7 12 | 3imtr3d |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A - 1 ) -> -. P || A ) ) |