| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 2 | 1 | neii | ⊢ ¬  1  =  0 | 
						
							| 3 |  | eqeq1 | ⊢ ( 1  =  ( 𝐴  mod  𝑃 )  →  ( 1  =  0  ↔  ( 𝐴  mod  𝑃 )  =  0 ) ) | 
						
							| 4 | 3 | eqcoms | ⊢ ( ( 𝐴  mod  𝑃 )  =  1  →  ( 1  =  0  ↔  ( 𝐴  mod  𝑃 )  =  0 ) ) | 
						
							| 5 | 2 4 | mtbii | ⊢ ( ( 𝐴  mod  𝑃 )  =  1  →  ¬  ( 𝐴  mod  𝑃 )  =  0 ) | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ( 𝐴  mod  𝑃 )  =  1  →  ¬  ( 𝐴  mod  𝑃 )  =  0 ) ) | 
						
							| 7 |  | modprm1div | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ( 𝐴  mod  𝑃 )  =  1  ↔  𝑃  ∥  ( 𝐴  −  1 ) ) ) | 
						
							| 8 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 9 |  | dvdsval3 | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝐴  ∈  ℤ )  →  ( 𝑃  ∥  𝐴  ↔  ( 𝐴  mod  𝑃 )  =  0 ) ) | 
						
							| 10 | 8 9 | sylan | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( 𝑃  ∥  𝐴  ↔  ( 𝐴  mod  𝑃 )  =  0 ) ) | 
						
							| 11 | 10 | bicomd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ( 𝐴  mod  𝑃 )  =  0  ↔  𝑃  ∥  𝐴 ) ) | 
						
							| 12 | 11 | notbid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ¬  ( 𝐴  mod  𝑃 )  =  0  ↔  ¬  𝑃  ∥  𝐴 ) ) | 
						
							| 13 | 6 7 12 | 3imtr3d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( 𝑃  ∥  ( 𝐴  −  1 )  →  ¬  𝑃  ∥  𝐴 ) ) |