Metamath Proof Explorer


Theorem mamufacex

Description: Every solution of the equation A * X = B for matrices A and B is a matrix. (Contributed by AV, 10-Feb-2019)

Ref Expression
Hypotheses mamudm.e
|- E = ( R freeLMod ( M X. N ) )
mamudm.b
|- B = ( Base ` E )
mamudm.f
|- F = ( R freeLMod ( N X. P ) )
mamudm.c
|- C = ( Base ` F )
mamudm.m
|- .X. = ( R maMul <. M , N , P >. )
mamufacex.g
|- G = ( R freeLMod ( M X. P ) )
mamufacex.d
|- D = ( Base ` G )
Assertion mamufacex
|- ( ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> ( ( X .X. Z ) = Y -> Z e. C ) )

Proof

Step Hyp Ref Expression
1 mamudm.e
 |-  E = ( R freeLMod ( M X. N ) )
2 mamudm.b
 |-  B = ( Base ` E )
3 mamudm.f
 |-  F = ( R freeLMod ( N X. P ) )
4 mamudm.c
 |-  C = ( Base ` F )
5 mamudm.m
 |-  .X. = ( R maMul <. M , N , P >. )
6 mamufacex.g
 |-  G = ( R freeLMod ( M X. P ) )
7 mamufacex.d
 |-  D = ( Base ` G )
8 2a1
 |-  ( Z e. C -> ( ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> ( ( X .X. Z ) = Y -> Z e. C ) ) )
9 1 2 3 4 5 mamudm
 |-  ( ( R e. V /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> dom .X. = ( B X. C ) )
10 9 adantlr
 |-  ( ( ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> dom .X. = ( B X. C ) )
11 10 3adant1
 |-  ( ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> dom .X. = ( B X. C ) )
12 simpl
 |-  ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> -. Z e. C )
13 12 intnand
 |-  ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> -. ( X e. B /\ Z e. C ) )
14 ndmovg
 |-  ( ( dom .X. = ( B X. C ) /\ -. ( X e. B /\ Z e. C ) ) -> ( X .X. Z ) = (/) )
15 11 13 14 syl2an2
 |-  ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> ( X .X. Z ) = (/) )
16 eqeq1
 |-  ( ( X .X. Z ) = (/) -> ( ( X .X. Z ) = Y <-> (/) = Y ) )
17 xpfi
 |-  ( ( M e. Fin /\ P e. Fin ) -> ( M X. P ) e. Fin )
18 17 3adant2
 |-  ( ( M e. Fin /\ N e. Fin /\ P e. Fin ) -> ( M X. P ) e. Fin )
19 xpnz
 |-  ( ( M =/= (/) /\ P =/= (/) ) <-> ( M X. P ) =/= (/) )
20 19 biimpi
 |-  ( ( M =/= (/) /\ P =/= (/) ) -> ( M X. P ) =/= (/) )
21 eqid
 |-  ( Base ` R ) = ( Base ` R )
22 6 21 7 elfrlmbasn0
 |-  ( ( ( M X. P ) e. Fin /\ ( M X. P ) =/= (/) ) -> ( Y e. D -> Y =/= (/) ) )
23 18 20 22 syl2an
 |-  ( ( ( M e. Fin /\ N e. Fin /\ P e. Fin ) /\ ( M =/= (/) /\ P =/= (/) ) ) -> ( Y e. D -> Y =/= (/) ) )
24 23 ex
 |-  ( ( M e. Fin /\ N e. Fin /\ P e. Fin ) -> ( ( M =/= (/) /\ P =/= (/) ) -> ( Y e. D -> Y =/= (/) ) ) )
25 24 com13
 |-  ( Y e. D -> ( ( M =/= (/) /\ P =/= (/) ) -> ( ( M e. Fin /\ N e. Fin /\ P e. Fin ) -> Y =/= (/) ) ) )
26 25 adantl
 |-  ( ( R e. V /\ Y e. D ) -> ( ( M =/= (/) /\ P =/= (/) ) -> ( ( M e. Fin /\ N e. Fin /\ P e. Fin ) -> Y =/= (/) ) ) )
27 26 3imp21
 |-  ( ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> Y =/= (/) )
28 eqneqall
 |-  ( Y = (/) -> ( Y =/= (/) -> Z e. C ) )
29 27 28 syl5com
 |-  ( ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> ( Y = (/) -> Z e. C ) )
30 29 adantl
 |-  ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> ( Y = (/) -> Z e. C ) )
31 30 com12
 |-  ( Y = (/) -> ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> Z e. C ) )
32 31 eqcoms
 |-  ( (/) = Y -> ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> Z e. C ) )
33 16 32 syl6bi
 |-  ( ( X .X. Z ) = (/) -> ( ( X .X. Z ) = Y -> ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> Z e. C ) ) )
34 33 com23
 |-  ( ( X .X. Z ) = (/) -> ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> ( ( X .X. Z ) = Y -> Z e. C ) ) )
35 15 34 mpcom
 |-  ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> ( ( X .X. Z ) = Y -> Z e. C ) )
36 35 ex
 |-  ( -. Z e. C -> ( ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> ( ( X .X. Z ) = Y -> Z e. C ) ) )
37 8 36 pm2.61i
 |-  ( ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> ( ( X .X. Z ) = Y -> Z e. C ) )