| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elmapi |
|- ( f e. ( (/) ^m A ) -> f : A --> (/) ) |
| 2 |
|
fdm |
|- ( f : A --> (/) -> dom f = A ) |
| 3 |
|
frn |
|- ( f : A --> (/) -> ran f C_ (/) ) |
| 4 |
|
ss0 |
|- ( ran f C_ (/) -> ran f = (/) ) |
| 5 |
3 4
|
syl |
|- ( f : A --> (/) -> ran f = (/) ) |
| 6 |
|
dm0rn0 |
|- ( dom f = (/) <-> ran f = (/) ) |
| 7 |
5 6
|
sylibr |
|- ( f : A --> (/) -> dom f = (/) ) |
| 8 |
2 7
|
eqtr3d |
|- ( f : A --> (/) -> A = (/) ) |
| 9 |
1 8
|
syl |
|- ( f e. ( (/) ^m A ) -> A = (/) ) |
| 10 |
9
|
necon3ai |
|- ( A =/= (/) -> -. f e. ( (/) ^m A ) ) |
| 11 |
10
|
eq0rdv |
|- ( A =/= (/) -> ( (/) ^m A ) = (/) ) |