Step |
Hyp |
Ref |
Expression |
1 |
|
elmapi |
|- ( f e. ( (/) ^m A ) -> f : A --> (/) ) |
2 |
|
fdm |
|- ( f : A --> (/) -> dom f = A ) |
3 |
|
frn |
|- ( f : A --> (/) -> ran f C_ (/) ) |
4 |
|
ss0 |
|- ( ran f C_ (/) -> ran f = (/) ) |
5 |
3 4
|
syl |
|- ( f : A --> (/) -> ran f = (/) ) |
6 |
|
dm0rn0 |
|- ( dom f = (/) <-> ran f = (/) ) |
7 |
5 6
|
sylibr |
|- ( f : A --> (/) -> dom f = (/) ) |
8 |
2 7
|
eqtr3d |
|- ( f : A --> (/) -> A = (/) ) |
9 |
1 8
|
syl |
|- ( f e. ( (/) ^m A ) -> A = (/) ) |
10 |
9
|
necon3ai |
|- ( A =/= (/) -> -. f e. ( (/) ^m A ) ) |
11 |
10
|
eq0rdv |
|- ( A =/= (/) -> ( (/) ^m A ) = (/) ) |