Metamath Proof Explorer


Theorem map0b

Description: Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of Suppes p. 89. (Contributed by NM, 10-Dec-2003) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion map0b
|- ( A =/= (/) -> ( (/) ^m A ) = (/) )

Proof

Step Hyp Ref Expression
1 elmapi
 |-  ( f e. ( (/) ^m A ) -> f : A --> (/) )
2 fdm
 |-  ( f : A --> (/) -> dom f = A )
3 frn
 |-  ( f : A --> (/) -> ran f C_ (/) )
4 ss0
 |-  ( ran f C_ (/) -> ran f = (/) )
5 3 4 syl
 |-  ( f : A --> (/) -> ran f = (/) )
6 dm0rn0
 |-  ( dom f = (/) <-> ran f = (/) )
7 5 6 sylibr
 |-  ( f : A --> (/) -> dom f = (/) )
8 2 7 eqtr3d
 |-  ( f : A --> (/) -> A = (/) )
9 1 8 syl
 |-  ( f e. ( (/) ^m A ) -> A = (/) )
10 9 necon3ai
 |-  ( A =/= (/) -> -. f e. ( (/) ^m A ) )
11 10 eq0rdv
 |-  ( A =/= (/) -> ( (/) ^m A ) = (/) )