Metamath Proof Explorer


Theorem mapco2

Description: Post-composition (renaming indices) of a mapping viewed as a point. (Contributed by Stefan O'Rear, 5-Oct-2014) (Revised by Stefan O'Rear, 5-May-2015)

Ref Expression
Hypothesis mapco2.3
|- E e. _V
Assertion mapco2
|- ( ( A e. ( B ^m C ) /\ D : E --> C ) -> ( A o. D ) e. ( B ^m E ) )

Proof

Step Hyp Ref Expression
1 mapco2.3
 |-  E e. _V
2 mapco2g
 |-  ( ( E e. _V /\ A e. ( B ^m C ) /\ D : E --> C ) -> ( A o. D ) e. ( B ^m E ) )
3 1 2 mp3an1
 |-  ( ( A e. ( B ^m C ) /\ D : E --> C ) -> ( A o. D ) e. ( B ^m E ) )