Metamath Proof Explorer


Theorem mapco2

Description: Post-composition (renaming indices) of a mapping viewed as a point. (Contributed by Stefan O'Rear, 5-Oct-2014) (Revised by Stefan O'Rear, 5-May-2015)

Ref Expression
Hypothesis mapco2.3 𝐸 ∈ V
Assertion mapco2 ( ( 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷 : 𝐸𝐶 ) → ( 𝐴𝐷 ) ∈ ( 𝐵m 𝐸 ) )

Proof

Step Hyp Ref Expression
1 mapco2.3 𝐸 ∈ V
2 mapco2g ( ( 𝐸 ∈ V ∧ 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷 : 𝐸𝐶 ) → ( 𝐴𝐷 ) ∈ ( 𝐵m 𝐸 ) )
3 1 2 mp3an1 ( ( 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷 : 𝐸𝐶 ) → ( 𝐴𝐷 ) ∈ ( 𝐵m 𝐸 ) )