Metamath Proof Explorer


Theorem mapco2g

Description: Renaming indices in a tuple, with sethood as antecedents. (Contributed by Stefan O'Rear, 9-Oct-2014) (Revised by Mario Carneiro, 5-May-2015)

Ref Expression
Assertion mapco2g ( ( 𝐸 ∈ V ∧ 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷 : 𝐸𝐶 ) → ( 𝐴𝐷 ) ∈ ( 𝐵m 𝐸 ) )

Proof

Step Hyp Ref Expression
1 elmapi ( 𝐴 ∈ ( 𝐵m 𝐶 ) → 𝐴 : 𝐶𝐵 )
2 fco ( ( 𝐴 : 𝐶𝐵𝐷 : 𝐸𝐶 ) → ( 𝐴𝐷 ) : 𝐸𝐵 )
3 1 2 sylan ( ( 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷 : 𝐸𝐶 ) → ( 𝐴𝐷 ) : 𝐸𝐵 )
4 3 3adant1 ( ( 𝐸 ∈ V ∧ 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷 : 𝐸𝐶 ) → ( 𝐴𝐷 ) : 𝐸𝐵 )
5 n0i ( 𝐴 ∈ ( 𝐵m 𝐶 ) → ¬ ( 𝐵m 𝐶 ) = ∅ )
6 reldmmap Rel dom ↑m
7 6 ovprc1 ( ¬ 𝐵 ∈ V → ( 𝐵m 𝐶 ) = ∅ )
8 5 7 nsyl2 ( 𝐴 ∈ ( 𝐵m 𝐶 ) → 𝐵 ∈ V )
9 8 3ad2ant2 ( ( 𝐸 ∈ V ∧ 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷 : 𝐸𝐶 ) → 𝐵 ∈ V )
10 simp1 ( ( 𝐸 ∈ V ∧ 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷 : 𝐸𝐶 ) → 𝐸 ∈ V )
11 9 10 elmapd ( ( 𝐸 ∈ V ∧ 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷 : 𝐸𝐶 ) → ( ( 𝐴𝐷 ) ∈ ( 𝐵m 𝐸 ) ↔ ( 𝐴𝐷 ) : 𝐸𝐵 ) )
12 4 11 mpbird ( ( 𝐸 ∈ V ∧ 𝐴 ∈ ( 𝐵m 𝐶 ) ∧ 𝐷 : 𝐸𝐶 ) → ( 𝐴𝐷 ) ∈ ( 𝐵m 𝐸 ) )