Step |
Hyp |
Ref |
Expression |
1 |
|
elmapi |
⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → 𝐴 : 𝐶 ⟶ 𝐵 ) |
2 |
|
fco |
⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐵 ∧ 𝐷 : 𝐸 ⟶ 𝐶 ) → ( 𝐴 ∘ 𝐷 ) : 𝐸 ⟶ 𝐵 ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 : 𝐸 ⟶ 𝐶 ) → ( 𝐴 ∘ 𝐷 ) : 𝐸 ⟶ 𝐵 ) |
4 |
3
|
3adant1 |
⊢ ( ( 𝐸 ∈ V ∧ 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 : 𝐸 ⟶ 𝐶 ) → ( 𝐴 ∘ 𝐷 ) : 𝐸 ⟶ 𝐵 ) |
5 |
|
n0i |
⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → ¬ ( 𝐵 ↑m 𝐶 ) = ∅ ) |
6 |
|
reldmmap |
⊢ Rel dom ↑m |
7 |
6
|
ovprc1 |
⊢ ( ¬ 𝐵 ∈ V → ( 𝐵 ↑m 𝐶 ) = ∅ ) |
8 |
5 7
|
nsyl2 |
⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → 𝐵 ∈ V ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝐸 ∈ V ∧ 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 : 𝐸 ⟶ 𝐶 ) → 𝐵 ∈ V ) |
10 |
|
simp1 |
⊢ ( ( 𝐸 ∈ V ∧ 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 : 𝐸 ⟶ 𝐶 ) → 𝐸 ∈ V ) |
11 |
9 10
|
elmapd |
⊢ ( ( 𝐸 ∈ V ∧ 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 : 𝐸 ⟶ 𝐶 ) → ( ( 𝐴 ∘ 𝐷 ) ∈ ( 𝐵 ↑m 𝐸 ) ↔ ( 𝐴 ∘ 𝐷 ) : 𝐸 ⟶ 𝐵 ) ) |
12 |
4 11
|
mpbird |
⊢ ( ( 𝐸 ∈ V ∧ 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 : 𝐸 ⟶ 𝐶 ) → ( 𝐴 ∘ 𝐷 ) ∈ ( 𝐵 ↑m 𝐸 ) ) |