Metamath Proof Explorer


Theorem mapco2g

Description: Renaming indices in a tuple, with sethood as antecedents. (Contributed by Stefan O'Rear, 9-Oct-2014) (Revised by Mario Carneiro, 5-May-2015)

Ref Expression
Assertion mapco2g E V A B C D : E C A D B E

Proof

Step Hyp Ref Expression
1 elmapi A B C A : C B
2 fco A : C B D : E C A D : E B
3 1 2 sylan A B C D : E C A D : E B
4 3 3adant1 E V A B C D : E C A D : E B
5 n0i A B C ¬ B C =
6 reldmmap Rel dom 𝑚
7 6 ovprc1 ¬ B V B C =
8 5 7 nsyl2 A B C B V
9 8 3ad2ant2 E V A B C D : E C B V
10 simp1 E V A B C D : E C E V
11 9 10 elmapd E V A B C D : E C A D B E A D : E B
12 4 11 mpbird E V A B C D : E C A D B E