| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdegxrcl.d |
|- D = ( I mDeg R ) |
| 2 |
|
mdegxrcl.p |
|- P = ( I mPoly R ) |
| 3 |
|
mdegxrcl.b |
|- B = ( Base ` P ) |
| 4 |
|
xrltso |
|- < Or RR* |
| 5 |
4
|
supex |
|- sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( z supp ( 0g ` R ) ) ) , RR* , < ) e. _V |
| 6 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 7 |
|
eqid |
|- { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } = { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |
| 8 |
|
eqid |
|- ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) = ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) |
| 9 |
1 2 3 6 7 8
|
mdegfval |
|- D = ( z e. B |-> sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( z supp ( 0g ` R ) ) ) , RR* , < ) ) |
| 10 |
5 9
|
fnmpti |
|- D Fn B |
| 11 |
1 2 3
|
mdegxrcl |
|- ( f e. B -> ( D ` f ) e. RR* ) |
| 12 |
11
|
rgen |
|- A. f e. B ( D ` f ) e. RR* |
| 13 |
|
ffnfv |
|- ( D : B --> RR* <-> ( D Fn B /\ A. f e. B ( D ` f ) e. RR* ) ) |
| 14 |
10 12 13
|
mpbir2an |
|- D : B --> RR* |