Step |
Hyp |
Ref |
Expression |
1 |
|
mdegxrcl.d |
|- D = ( I mDeg R ) |
2 |
|
mdegxrcl.p |
|- P = ( I mPoly R ) |
3 |
|
mdegxrcl.b |
|- B = ( Base ` P ) |
4 |
|
xrltso |
|- < Or RR* |
5 |
4
|
supex |
|- sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( z supp ( 0g ` R ) ) ) , RR* , < ) e. _V |
6 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
7 |
|
eqid |
|- { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } = { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |
8 |
|
eqid |
|- ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) = ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) |
9 |
1 2 3 6 7 8
|
mdegfval |
|- D = ( z e. B |-> sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( z supp ( 0g ` R ) ) ) , RR* , < ) ) |
10 |
5 9
|
fnmpti |
|- D Fn B |
11 |
1 2 3
|
mdegxrcl |
|- ( f e. B -> ( D ` f ) e. RR* ) |
12 |
11
|
rgen |
|- A. f e. B ( D ` f ) e. RR* |
13 |
|
ffnfv |
|- ( D : B --> RR* <-> ( D Fn B /\ A. f e. B ( D ` f ) e. RR* ) ) |
14 |
10 12 13
|
mpbir2an |
|- D : B --> RR* |