Description: The measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meacl.1 | |- ( ph -> M e. Meas ) |
|
| meacl.2 | |- S = dom M |
||
| meacl.3 | |- ( ph -> A e. S ) |
||
| Assertion | meacl | |- ( ph -> ( M ` A ) e. ( 0 [,] +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meacl.1 | |- ( ph -> M e. Meas ) |
|
| 2 | meacl.2 | |- S = dom M |
|
| 3 | meacl.3 | |- ( ph -> A e. S ) |
|
| 4 | 1 2 | meaf | |- ( ph -> M : S --> ( 0 [,] +oo ) ) |
| 5 | 4 3 | ffvelcdmd | |- ( ph -> ( M ` A ) e. ( 0 [,] +oo ) ) |