Description: The measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meacl.1 | ⊢ ( 𝜑 → 𝑀 ∈ Meas ) | |
| meacl.2 | ⊢ 𝑆 = dom 𝑀 | ||
| meacl.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
| Assertion | meacl | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meacl.1 | ⊢ ( 𝜑 → 𝑀 ∈ Meas ) | |
| 2 | meacl.2 | ⊢ 𝑆 = dom 𝑀 | |
| 3 | meacl.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
| 4 | 1 2 | meaf | ⊢ ( 𝜑 → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
| 5 | 4 3 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |