Description: The measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | meacl.1 | ⊢ ( 𝜑 → 𝑀 ∈ Meas ) | |
meacl.2 | ⊢ 𝑆 = dom 𝑀 | ||
meacl.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
Assertion | meacl | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meacl.1 | ⊢ ( 𝜑 → 𝑀 ∈ Meas ) | |
2 | meacl.2 | ⊢ 𝑆 = dom 𝑀 | |
3 | meacl.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
4 | 1 2 | meaf | ⊢ ( 𝜑 → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
5 | 4 3 | ffvelrnd | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |