Metamath Proof Explorer


Theorem meaf

Description: A measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meaf.m
|- ( ph -> M e. Meas )
meaf.s
|- S = dom M
Assertion meaf
|- ( ph -> M : S --> ( 0 [,] +oo ) )

Proof

Step Hyp Ref Expression
1 meaf.m
 |-  ( ph -> M e. Meas )
2 meaf.s
 |-  S = dom M
3 ismea
 |-  ( M e. Meas <-> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) )
4 1 3 sylib
 |-  ( ph -> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) )
5 4 simpld
 |-  ( ph -> ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) )
6 5 simplld
 |-  ( ph -> M : dom M --> ( 0 [,] +oo ) )
7 2 a1i
 |-  ( ph -> S = dom M )
8 7 feq2d
 |-  ( ph -> ( M : S --> ( 0 [,] +oo ) <-> M : dom M --> ( 0 [,] +oo ) ) )
9 6 8 mpbird
 |-  ( ph -> M : S --> ( 0 [,] +oo ) )