Step |
Hyp |
Ref |
Expression |
1 |
|
meaf.m |
|- ( ph -> M e. Meas ) |
2 |
|
meaf.s |
|- S = dom M |
3 |
|
ismea |
|- ( M e. Meas <-> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) ) |
4 |
1 3
|
sylib |
|- ( ph -> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) ) |
5 |
4
|
simpld |
|- ( ph -> ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) ) |
6 |
5
|
simplld |
|- ( ph -> M : dom M --> ( 0 [,] +oo ) ) |
7 |
2
|
a1i |
|- ( ph -> S = dom M ) |
8 |
7
|
feq2d |
|- ( ph -> ( M : S --> ( 0 [,] +oo ) <-> M : dom M --> ( 0 [,] +oo ) ) ) |
9 |
6 8
|
mpbird |
|- ( ph -> M : S --> ( 0 [,] +oo ) ) |