Description: The measure of the empty set is always 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mea0.1 | |- ( ph -> M e. Meas ) |
|
Assertion | mea0 | |- ( ph -> ( M ` (/) ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mea0.1 | |- ( ph -> M e. Meas ) |
|
2 | ismea | |- ( M e. Meas <-> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) ) |
|
3 | 1 2 | sylib | |- ( ph -> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) ) |
4 | 3 | simplrd | |- ( ph -> ( M ` (/) ) = 0 ) |