Metamath Proof Explorer


Theorem mea0

Description: The measure of the empty set is always 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis mea0.1 φMMeas
Assertion mea0 φM=0

Proof

Step Hyp Ref Expression
1 mea0.1 φMMeas
2 ismea MMeasM:domM0+∞domMSAlgM=0x𝒫domMxωDisjyxyMx=sum^Mx
3 1 2 sylib φM:domM0+∞domMSAlgM=0x𝒫domMxωDisjyxyMx=sum^Mx
4 3 simplrd φM=0