Metamath Proof Explorer


Theorem mea0

Description: The measure of the empty set is always 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis mea0.1 φ M Meas
Assertion mea0 φ M = 0

Proof

Step Hyp Ref Expression
1 mea0.1 φ M Meas
2 ismea M Meas M : dom M 0 +∞ dom M SAlg M = 0 x 𝒫 dom M x ω Disj y x y M x = sum^ M x
3 1 2 sylib φ M : dom M 0 +∞ dom M SAlg M = 0 x 𝒫 dom M x ω Disj y x y M x = sum^ M x
4 3 simplrd φ M = 0