Step |
Hyp |
Ref |
Expression |
1 |
|
nnfoctbdjlem.a |
|
2 |
|
nnfoctbdjlem.g |
|
3 |
|
nnfoctbdjlem.dj |
|
4 |
|
nnfoctbdjlem.f |
|
5 |
|
iftrue |
|
6 |
5
|
adantl |
|
7 |
|
0ex |
|
8 |
7
|
snid |
|
9 |
|
elun2 |
|
10 |
8 9
|
ax-mp |
|
11 |
6 10
|
eqeltrdi |
|
12 |
11
|
adantll |
|
13 |
|
iffalse |
|
14 |
13
|
adantl |
|
15 |
|
f1of |
|
16 |
2 15
|
syl |
|
17 |
16
|
adantr |
|
18 |
|
pm2.46 |
|
19 |
18
|
notnotrd |
|
20 |
19
|
adantl |
|
21 |
17 20
|
ffvelrnd |
|
22 |
21
|
adantlr |
|
23 |
|
elun1 |
|
24 |
22 23
|
syl |
|
25 |
14 24
|
eqeltrd |
|
26 |
12 25
|
pm2.61dan |
|
27 |
26 4
|
fmptd |
|
28 |
|
simpr |
|
29 |
|
f1ofo |
|
30 |
|
forn |
|
31 |
2 29 30
|
3syl |
|
32 |
31
|
eqcomd |
|
33 |
32
|
adantr |
|
34 |
28 33
|
eleqtrd |
|
35 |
16
|
ffnd |
|
36 |
|
fvelrnb |
|
37 |
35 36
|
syl |
|
38 |
37
|
adantr |
|
39 |
34 38
|
mpbid |
|
40 |
1
|
sselda |
|
41 |
40
|
peano2nnd |
|
42 |
41
|
3adant3 |
|
43 |
4
|
a1i |
|
44 |
|
1red |
|
45 |
|
1red |
|
46 |
40
|
nnrpd |
|
47 |
45 46
|
ltaddrp2d |
|
48 |
47
|
adantr |
|
49 |
|
id |
|
50 |
49
|
eqcomd |
|
51 |
50
|
adantl |
|
52 |
48 51
|
breqtrd |
|
53 |
44 52
|
gtned |
|
54 |
53
|
neneqd |
|
55 |
|
oveq1 |
|
56 |
40
|
nncnd |
|
57 |
|
1cnd |
|
58 |
56 57
|
pncand |
|
59 |
55 58
|
sylan9eqr |
|
60 |
|
simplr |
|
61 |
59 60
|
eqeltrd |
|
62 |
61
|
notnotd |
|
63 |
|
ioran |
|
64 |
54 62 63
|
sylanbrc |
|
65 |
64
|
iffalsed |
|
66 |
59
|
fveq2d |
|
67 |
65 66
|
eqtrd |
|
68 |
16
|
ffvelrnda |
|
69 |
43 67 41 68
|
fvmptd |
|
70 |
69
|
3adant3 |
|
71 |
|
simp3 |
|
72 |
70 71
|
eqtrd |
|
73 |
|
fveq2 |
|
74 |
73
|
eqeq1d |
|
75 |
74
|
rspcev |
|
76 |
42 72 75
|
syl2anc |
|
77 |
76
|
3exp |
|
78 |
77
|
adantr |
|
79 |
78
|
rexlimdv |
|
80 |
39 79
|
mpd |
|
81 |
|
id |
|
82 |
81
|
eqcomd |
|
83 |
82
|
a1i |
|
84 |
83
|
reximdva |
|
85 |
80 84
|
mpd |
|
86 |
85
|
adantlr |
|
87 |
|
simpll |
|
88 |
|
elunnel1 |
|
89 |
|
elsni |
|
90 |
88 89
|
syl |
|
91 |
90
|
adantll |
|
92 |
|
1nn |
|
93 |
92
|
a1i |
|
94 |
5
|
orcs |
|
95 |
92
|
a1i |
|
96 |
7
|
a1i |
|
97 |
4 94 95 96
|
fvmptd3 |
|
98 |
97
|
adantr |
|
99 |
|
id |
|
100 |
99
|
eqcomd |
|
101 |
100
|
adantl |
|
102 |
98 101
|
eqtr2d |
|
103 |
|
fveq2 |
|
104 |
103
|
rspceeqv |
|
105 |
93 102 104
|
syl2anc |
|
106 |
87 91 105
|
syl2anc |
|
107 |
86 106
|
pm2.61dan |
|
108 |
107
|
ralrimiva |
|
109 |
|
dffo3 |
|
110 |
27 108 109
|
sylanbrc |
|
111 |
|
animorrl |
|
112 |
6 7
|
eqeltrdi |
|
113 |
4
|
fvmpt2 |
|
114 |
112 113
|
syldan |
|
115 |
114 6
|
eqtrd |
|
116 |
115
|
ineq1d |
|
117 |
|
0in |
|
118 |
116 117
|
eqtrdi |
|
119 |
118
|
adantlr |
|
120 |
119
|
ad4ant24 |
|
121 |
|
eqeq1 |
|
122 |
|
oveq1 |
|
123 |
122
|
eleq1d |
|
124 |
123
|
notbid |
|
125 |
121 124
|
orbi12d |
|
126 |
122
|
fveq2d |
|
127 |
125 126
|
ifbieq2d |
|
128 |
|
simpl |
|
129 |
|
iftrue |
|
130 |
129 7
|
eqeltrdi |
|
131 |
130
|
adantl |
|
132 |
4 127 128 131
|
fvmptd3 |
|
133 |
129
|
adantl |
|
134 |
132 133
|
eqtrd |
|
135 |
134
|
ineq2d |
|
136 |
|
in0 |
|
137 |
135 136
|
eqtrdi |
|
138 |
137
|
adantll |
|
139 |
138
|
ad5ant25 |
|
140 |
|
fvex |
|
141 |
7 140
|
ifex |
|
142 |
141 113
|
mpan2 |
|
143 |
142 13
|
sylan9eq |
|
144 |
143
|
adantlr |
|
145 |
144
|
3adant3 |
|
146 |
4
|
a1i |
|
147 |
127
|
adantl |
|
148 |
|
iffalse |
|
149 |
148
|
ad2antlr |
|
150 |
147 149
|
eqtrd |
|
151 |
|
simpl |
|
152 |
|
fvexd |
|
153 |
146 150 151 152
|
fvmptd |
|
154 |
153
|
adantll |
|
155 |
154
|
3adant2 |
|
156 |
145 155
|
ineq12d |
|
157 |
156
|
ad5ant245 |
|
158 |
19
|
ad2antlr |
|
159 |
|
pm2.46 |
|
160 |
159
|
notnotrd |
|
161 |
160
|
adantl |
|
162 |
|
f1of1 |
|
163 |
2 162
|
syl |
|
164 |
|
dff14a |
|
165 |
163 164
|
sylib |
|
166 |
165
|
simprd |
|
167 |
166
|
adantr |
|
168 |
167
|
ad3antrrr |
|
169 |
158 161 168
|
jca31 |
|
170 |
|
nncn |
|
171 |
170
|
adantr |
|
172 |
171
|
ad2antlr |
|
173 |
|
nncn |
|
174 |
173
|
adantl |
|
175 |
174
|
ad2antlr |
|
176 |
|
1cnd |
|
177 |
|
simpr |
|
178 |
172 175 176 177
|
subneintr2d |
|
179 |
178
|
ad2antrr |
|
180 |
|
neeq1 |
|
181 |
|
fveq2 |
|
182 |
181
|
neeq1d |
|
183 |
180 182
|
imbi12d |
|
184 |
|
neeq2 |
|
185 |
|
fveq2 |
|
186 |
185
|
neeq2d |
|
187 |
184 186
|
imbi12d |
|
188 |
183 187
|
rspc2va |
|
189 |
169 179 188
|
sylc |
|
190 |
189
|
neneqd |
|
191 |
21
|
ad4ant13 |
|
192 |
16
|
ffvelrnda |
|
193 |
160 192
|
sylan2 |
|
194 |
193
|
ad4ant14 |
|
195 |
|
id |
|
196 |
195
|
disjor |
|
197 |
3 196
|
sylib |
|
198 |
197
|
ad3antrrr |
|
199 |
|
eqeq1 |
|
200 |
|
ineq1 |
|
201 |
200
|
eqeq1d |
|
202 |
199 201
|
orbi12d |
|
203 |
|
eqeq2 |
|
204 |
|
ineq2 |
|
205 |
204
|
eqeq1d |
|
206 |
203 205
|
orbi12d |
|
207 |
202 206
|
rspc2va |
|
208 |
191 194 198 207
|
syl21anc |
|
209 |
208
|
adantllr |
|
210 |
|
orel1 |
|
211 |
190 209 210
|
sylc |
|
212 |
157 211
|
eqtrd |
|
213 |
139 212
|
pm2.61dan |
|
214 |
120 213
|
pm2.61dan |
|
215 |
214
|
olcd |
|
216 |
111 215
|
pm2.61dane |
|
217 |
216
|
ralrimivva |
|
218 |
|
fveq2 |
|
219 |
218
|
disjor |
|
220 |
217 219
|
sylibr |
|
221 |
|
nnex |
|
222 |
221
|
mptex |
|
223 |
4 222
|
eqeltri |
|
224 |
|
foeq1 |
|
225 |
|
simpl |
|
226 |
225
|
fveq1d |
|
227 |
226
|
disjeq2dv |
|
228 |
224 227
|
anbi12d |
|
229 |
223 228
|
spcev |
|
230 |
110 220 229
|
syl2anc |
|