| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnfoctbdjlem.a |
|- ( ph -> A C_ NN ) |
| 2 |
|
nnfoctbdjlem.g |
|- ( ph -> G : A -1-1-onto-> X ) |
| 3 |
|
nnfoctbdjlem.dj |
|- ( ph -> Disj_ y e. X y ) |
| 4 |
|
nnfoctbdjlem.f |
|- F = ( n e. NN |-> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) ) |
| 5 |
|
iftrue |
|- ( ( n = 1 \/ -. ( n - 1 ) e. A ) -> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) = (/) ) |
| 6 |
5
|
adantl |
|- ( ( n e. NN /\ ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) = (/) ) |
| 7 |
|
0ex |
|- (/) e. _V |
| 8 |
7
|
snid |
|- (/) e. { (/) } |
| 9 |
|
elun2 |
|- ( (/) e. { (/) } -> (/) e. ( X u. { (/) } ) ) |
| 10 |
8 9
|
ax-mp |
|- (/) e. ( X u. { (/) } ) |
| 11 |
6 10
|
eqeltrdi |
|- ( ( n e. NN /\ ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) e. ( X u. { (/) } ) ) |
| 12 |
11
|
adantll |
|- ( ( ( ph /\ n e. NN ) /\ ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) e. ( X u. { (/) } ) ) |
| 13 |
|
iffalse |
|- ( -. ( n = 1 \/ -. ( n - 1 ) e. A ) -> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) = ( G ` ( n - 1 ) ) ) |
| 14 |
13
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) = ( G ` ( n - 1 ) ) ) |
| 15 |
|
f1of |
|- ( G : A -1-1-onto-> X -> G : A --> X ) |
| 16 |
2 15
|
syl |
|- ( ph -> G : A --> X ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> G : A --> X ) |
| 18 |
|
pm2.46 |
|- ( -. ( n = 1 \/ -. ( n - 1 ) e. A ) -> -. -. ( n - 1 ) e. A ) |
| 19 |
18
|
notnotrd |
|- ( -. ( n = 1 \/ -. ( n - 1 ) e. A ) -> ( n - 1 ) e. A ) |
| 20 |
19
|
adantl |
|- ( ( ph /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> ( n - 1 ) e. A ) |
| 21 |
17 20
|
ffvelcdmd |
|- ( ( ph /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> ( G ` ( n - 1 ) ) e. X ) |
| 22 |
21
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> ( G ` ( n - 1 ) ) e. X ) |
| 23 |
|
elun1 |
|- ( ( G ` ( n - 1 ) ) e. X -> ( G ` ( n - 1 ) ) e. ( X u. { (/) } ) ) |
| 24 |
22 23
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> ( G ` ( n - 1 ) ) e. ( X u. { (/) } ) ) |
| 25 |
14 24
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) e. ( X u. { (/) } ) ) |
| 26 |
12 25
|
pm2.61dan |
|- ( ( ph /\ n e. NN ) -> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) e. ( X u. { (/) } ) ) |
| 27 |
26 4
|
fmptd |
|- ( ph -> F : NN --> ( X u. { (/) } ) ) |
| 28 |
|
simpr |
|- ( ( ph /\ y e. X ) -> y e. X ) |
| 29 |
|
f1ofo |
|- ( G : A -1-1-onto-> X -> G : A -onto-> X ) |
| 30 |
|
forn |
|- ( G : A -onto-> X -> ran G = X ) |
| 31 |
2 29 30
|
3syl |
|- ( ph -> ran G = X ) |
| 32 |
31
|
eqcomd |
|- ( ph -> X = ran G ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ y e. X ) -> X = ran G ) |
| 34 |
28 33
|
eleqtrd |
|- ( ( ph /\ y e. X ) -> y e. ran G ) |
| 35 |
16
|
ffnd |
|- ( ph -> G Fn A ) |
| 36 |
|
fvelrnb |
|- ( G Fn A -> ( y e. ran G <-> E. k e. A ( G ` k ) = y ) ) |
| 37 |
35 36
|
syl |
|- ( ph -> ( y e. ran G <-> E. k e. A ( G ` k ) = y ) ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ y e. X ) -> ( y e. ran G <-> E. k e. A ( G ` k ) = y ) ) |
| 39 |
34 38
|
mpbid |
|- ( ( ph /\ y e. X ) -> E. k e. A ( G ` k ) = y ) |
| 40 |
1
|
sselda |
|- ( ( ph /\ k e. A ) -> k e. NN ) |
| 41 |
40
|
peano2nnd |
|- ( ( ph /\ k e. A ) -> ( k + 1 ) e. NN ) |
| 42 |
41
|
3adant3 |
|- ( ( ph /\ k e. A /\ ( G ` k ) = y ) -> ( k + 1 ) e. NN ) |
| 43 |
4
|
a1i |
|- ( ( ph /\ k e. A ) -> F = ( n e. NN |-> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) ) ) |
| 44 |
|
1red |
|- ( ( ( ph /\ k e. A ) /\ n = ( k + 1 ) ) -> 1 e. RR ) |
| 45 |
|
1red |
|- ( ( ph /\ k e. A ) -> 1 e. RR ) |
| 46 |
40
|
nnrpd |
|- ( ( ph /\ k e. A ) -> k e. RR+ ) |
| 47 |
45 46
|
ltaddrp2d |
|- ( ( ph /\ k e. A ) -> 1 < ( k + 1 ) ) |
| 48 |
47
|
adantr |
|- ( ( ( ph /\ k e. A ) /\ n = ( k + 1 ) ) -> 1 < ( k + 1 ) ) |
| 49 |
|
id |
|- ( n = ( k + 1 ) -> n = ( k + 1 ) ) |
| 50 |
49
|
eqcomd |
|- ( n = ( k + 1 ) -> ( k + 1 ) = n ) |
| 51 |
50
|
adantl |
|- ( ( ( ph /\ k e. A ) /\ n = ( k + 1 ) ) -> ( k + 1 ) = n ) |
| 52 |
48 51
|
breqtrd |
|- ( ( ( ph /\ k e. A ) /\ n = ( k + 1 ) ) -> 1 < n ) |
| 53 |
44 52
|
gtned |
|- ( ( ( ph /\ k e. A ) /\ n = ( k + 1 ) ) -> n =/= 1 ) |
| 54 |
53
|
neneqd |
|- ( ( ( ph /\ k e. A ) /\ n = ( k + 1 ) ) -> -. n = 1 ) |
| 55 |
|
oveq1 |
|- ( n = ( k + 1 ) -> ( n - 1 ) = ( ( k + 1 ) - 1 ) ) |
| 56 |
40
|
nncnd |
|- ( ( ph /\ k e. A ) -> k e. CC ) |
| 57 |
|
1cnd |
|- ( ( ph /\ k e. A ) -> 1 e. CC ) |
| 58 |
56 57
|
pncand |
|- ( ( ph /\ k e. A ) -> ( ( k + 1 ) - 1 ) = k ) |
| 59 |
55 58
|
sylan9eqr |
|- ( ( ( ph /\ k e. A ) /\ n = ( k + 1 ) ) -> ( n - 1 ) = k ) |
| 60 |
|
simplr |
|- ( ( ( ph /\ k e. A ) /\ n = ( k + 1 ) ) -> k e. A ) |
| 61 |
59 60
|
eqeltrd |
|- ( ( ( ph /\ k e. A ) /\ n = ( k + 1 ) ) -> ( n - 1 ) e. A ) |
| 62 |
61
|
notnotd |
|- ( ( ( ph /\ k e. A ) /\ n = ( k + 1 ) ) -> -. -. ( n - 1 ) e. A ) |
| 63 |
|
ioran |
|- ( -. ( n = 1 \/ -. ( n - 1 ) e. A ) <-> ( -. n = 1 /\ -. -. ( n - 1 ) e. A ) ) |
| 64 |
54 62 63
|
sylanbrc |
|- ( ( ( ph /\ k e. A ) /\ n = ( k + 1 ) ) -> -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) |
| 65 |
64
|
iffalsed |
|- ( ( ( ph /\ k e. A ) /\ n = ( k + 1 ) ) -> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) = ( G ` ( n - 1 ) ) ) |
| 66 |
59
|
fveq2d |
|- ( ( ( ph /\ k e. A ) /\ n = ( k + 1 ) ) -> ( G ` ( n - 1 ) ) = ( G ` k ) ) |
| 67 |
65 66
|
eqtrd |
|- ( ( ( ph /\ k e. A ) /\ n = ( k + 1 ) ) -> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) = ( G ` k ) ) |
| 68 |
16
|
ffvelcdmda |
|- ( ( ph /\ k e. A ) -> ( G ` k ) e. X ) |
| 69 |
43 67 41 68
|
fvmptd |
|- ( ( ph /\ k e. A ) -> ( F ` ( k + 1 ) ) = ( G ` k ) ) |
| 70 |
69
|
3adant3 |
|- ( ( ph /\ k e. A /\ ( G ` k ) = y ) -> ( F ` ( k + 1 ) ) = ( G ` k ) ) |
| 71 |
|
simp3 |
|- ( ( ph /\ k e. A /\ ( G ` k ) = y ) -> ( G ` k ) = y ) |
| 72 |
70 71
|
eqtrd |
|- ( ( ph /\ k e. A /\ ( G ` k ) = y ) -> ( F ` ( k + 1 ) ) = y ) |
| 73 |
|
fveq2 |
|- ( m = ( k + 1 ) -> ( F ` m ) = ( F ` ( k + 1 ) ) ) |
| 74 |
73
|
eqeq1d |
|- ( m = ( k + 1 ) -> ( ( F ` m ) = y <-> ( F ` ( k + 1 ) ) = y ) ) |
| 75 |
74
|
rspcev |
|- ( ( ( k + 1 ) e. NN /\ ( F ` ( k + 1 ) ) = y ) -> E. m e. NN ( F ` m ) = y ) |
| 76 |
42 72 75
|
syl2anc |
|- ( ( ph /\ k e. A /\ ( G ` k ) = y ) -> E. m e. NN ( F ` m ) = y ) |
| 77 |
76
|
3exp |
|- ( ph -> ( k e. A -> ( ( G ` k ) = y -> E. m e. NN ( F ` m ) = y ) ) ) |
| 78 |
77
|
adantr |
|- ( ( ph /\ y e. X ) -> ( k e. A -> ( ( G ` k ) = y -> E. m e. NN ( F ` m ) = y ) ) ) |
| 79 |
78
|
rexlimdv |
|- ( ( ph /\ y e. X ) -> ( E. k e. A ( G ` k ) = y -> E. m e. NN ( F ` m ) = y ) ) |
| 80 |
39 79
|
mpd |
|- ( ( ph /\ y e. X ) -> E. m e. NN ( F ` m ) = y ) |
| 81 |
|
id |
|- ( ( F ` m ) = y -> ( F ` m ) = y ) |
| 82 |
81
|
eqcomd |
|- ( ( F ` m ) = y -> y = ( F ` m ) ) |
| 83 |
82
|
a1i |
|- ( ( ( ph /\ y e. X ) /\ m e. NN ) -> ( ( F ` m ) = y -> y = ( F ` m ) ) ) |
| 84 |
83
|
reximdva |
|- ( ( ph /\ y e. X ) -> ( E. m e. NN ( F ` m ) = y -> E. m e. NN y = ( F ` m ) ) ) |
| 85 |
80 84
|
mpd |
|- ( ( ph /\ y e. X ) -> E. m e. NN y = ( F ` m ) ) |
| 86 |
85
|
adantlr |
|- ( ( ( ph /\ y e. ( X u. { (/) } ) ) /\ y e. X ) -> E. m e. NN y = ( F ` m ) ) |
| 87 |
|
simpll |
|- ( ( ( ph /\ y e. ( X u. { (/) } ) ) /\ -. y e. X ) -> ph ) |
| 88 |
|
elunnel1 |
|- ( ( y e. ( X u. { (/) } ) /\ -. y e. X ) -> y e. { (/) } ) |
| 89 |
|
elsni |
|- ( y e. { (/) } -> y = (/) ) |
| 90 |
88 89
|
syl |
|- ( ( y e. ( X u. { (/) } ) /\ -. y e. X ) -> y = (/) ) |
| 91 |
90
|
adantll |
|- ( ( ( ph /\ y e. ( X u. { (/) } ) ) /\ -. y e. X ) -> y = (/) ) |
| 92 |
|
1nn |
|- 1 e. NN |
| 93 |
92
|
a1i |
|- ( ( ph /\ y = (/) ) -> 1 e. NN ) |
| 94 |
5
|
orcs |
|- ( n = 1 -> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) = (/) ) |
| 95 |
92
|
a1i |
|- ( ph -> 1 e. NN ) |
| 96 |
7
|
a1i |
|- ( ph -> (/) e. _V ) |
| 97 |
4 94 95 96
|
fvmptd3 |
|- ( ph -> ( F ` 1 ) = (/) ) |
| 98 |
97
|
adantr |
|- ( ( ph /\ y = (/) ) -> ( F ` 1 ) = (/) ) |
| 99 |
|
id |
|- ( y = (/) -> y = (/) ) |
| 100 |
99
|
eqcomd |
|- ( y = (/) -> (/) = y ) |
| 101 |
100
|
adantl |
|- ( ( ph /\ y = (/) ) -> (/) = y ) |
| 102 |
98 101
|
eqtr2d |
|- ( ( ph /\ y = (/) ) -> y = ( F ` 1 ) ) |
| 103 |
|
fveq2 |
|- ( m = 1 -> ( F ` m ) = ( F ` 1 ) ) |
| 104 |
103
|
rspceeqv |
|- ( ( 1 e. NN /\ y = ( F ` 1 ) ) -> E. m e. NN y = ( F ` m ) ) |
| 105 |
93 102 104
|
syl2anc |
|- ( ( ph /\ y = (/) ) -> E. m e. NN y = ( F ` m ) ) |
| 106 |
87 91 105
|
syl2anc |
|- ( ( ( ph /\ y e. ( X u. { (/) } ) ) /\ -. y e. X ) -> E. m e. NN y = ( F ` m ) ) |
| 107 |
86 106
|
pm2.61dan |
|- ( ( ph /\ y e. ( X u. { (/) } ) ) -> E. m e. NN y = ( F ` m ) ) |
| 108 |
107
|
ralrimiva |
|- ( ph -> A. y e. ( X u. { (/) } ) E. m e. NN y = ( F ` m ) ) |
| 109 |
|
dffo3 |
|- ( F : NN -onto-> ( X u. { (/) } ) <-> ( F : NN --> ( X u. { (/) } ) /\ A. y e. ( X u. { (/) } ) E. m e. NN y = ( F ` m ) ) ) |
| 110 |
27 108 109
|
sylanbrc |
|- ( ph -> F : NN -onto-> ( X u. { (/) } ) ) |
| 111 |
|
animorrl |
|- ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n = m ) -> ( n = m \/ ( ( F ` n ) i^i ( F ` m ) ) = (/) ) ) |
| 112 |
6 7
|
eqeltrdi |
|- ( ( n e. NN /\ ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) e. _V ) |
| 113 |
4
|
fvmpt2 |
|- ( ( n e. NN /\ if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) e. _V ) -> ( F ` n ) = if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) ) |
| 114 |
112 113
|
syldan |
|- ( ( n e. NN /\ ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> ( F ` n ) = if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) ) |
| 115 |
114 6
|
eqtrd |
|- ( ( n e. NN /\ ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> ( F ` n ) = (/) ) |
| 116 |
115
|
ineq1d |
|- ( ( n e. NN /\ ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> ( ( F ` n ) i^i ( F ` m ) ) = ( (/) i^i ( F ` m ) ) ) |
| 117 |
|
0in |
|- ( (/) i^i ( F ` m ) ) = (/) |
| 118 |
116 117
|
eqtrdi |
|- ( ( n e. NN /\ ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> ( ( F ` n ) i^i ( F ` m ) ) = (/) ) |
| 119 |
118
|
adantlr |
|- ( ( ( n e. NN /\ m e. NN ) /\ ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> ( ( F ` n ) i^i ( F ` m ) ) = (/) ) |
| 120 |
119
|
ad4ant24 |
|- ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) /\ ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> ( ( F ` n ) i^i ( F ` m ) ) = (/) ) |
| 121 |
|
eqeq1 |
|- ( n = m -> ( n = 1 <-> m = 1 ) ) |
| 122 |
|
oveq1 |
|- ( n = m -> ( n - 1 ) = ( m - 1 ) ) |
| 123 |
122
|
eleq1d |
|- ( n = m -> ( ( n - 1 ) e. A <-> ( m - 1 ) e. A ) ) |
| 124 |
123
|
notbid |
|- ( n = m -> ( -. ( n - 1 ) e. A <-> -. ( m - 1 ) e. A ) ) |
| 125 |
121 124
|
orbi12d |
|- ( n = m -> ( ( n = 1 \/ -. ( n - 1 ) e. A ) <-> ( m = 1 \/ -. ( m - 1 ) e. A ) ) ) |
| 126 |
122
|
fveq2d |
|- ( n = m -> ( G ` ( n - 1 ) ) = ( G ` ( m - 1 ) ) ) |
| 127 |
125 126
|
ifbieq2d |
|- ( n = m -> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) = if ( ( m = 1 \/ -. ( m - 1 ) e. A ) , (/) , ( G ` ( m - 1 ) ) ) ) |
| 128 |
|
simpl |
|- ( ( m e. NN /\ ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> m e. NN ) |
| 129 |
|
iftrue |
|- ( ( m = 1 \/ -. ( m - 1 ) e. A ) -> if ( ( m = 1 \/ -. ( m - 1 ) e. A ) , (/) , ( G ` ( m - 1 ) ) ) = (/) ) |
| 130 |
129 7
|
eqeltrdi |
|- ( ( m = 1 \/ -. ( m - 1 ) e. A ) -> if ( ( m = 1 \/ -. ( m - 1 ) e. A ) , (/) , ( G ` ( m - 1 ) ) ) e. _V ) |
| 131 |
130
|
adantl |
|- ( ( m e. NN /\ ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> if ( ( m = 1 \/ -. ( m - 1 ) e. A ) , (/) , ( G ` ( m - 1 ) ) ) e. _V ) |
| 132 |
4 127 128 131
|
fvmptd3 |
|- ( ( m e. NN /\ ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( F ` m ) = if ( ( m = 1 \/ -. ( m - 1 ) e. A ) , (/) , ( G ` ( m - 1 ) ) ) ) |
| 133 |
129
|
adantl |
|- ( ( m e. NN /\ ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> if ( ( m = 1 \/ -. ( m - 1 ) e. A ) , (/) , ( G ` ( m - 1 ) ) ) = (/) ) |
| 134 |
132 133
|
eqtrd |
|- ( ( m e. NN /\ ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( F ` m ) = (/) ) |
| 135 |
134
|
ineq2d |
|- ( ( m e. NN /\ ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( ( F ` n ) i^i ( F ` m ) ) = ( ( F ` n ) i^i (/) ) ) |
| 136 |
|
in0 |
|- ( ( F ` n ) i^i (/) ) = (/) |
| 137 |
135 136
|
eqtrdi |
|- ( ( m e. NN /\ ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( ( F ` n ) i^i ( F ` m ) ) = (/) ) |
| 138 |
137
|
adantll |
|- ( ( ( n e. NN /\ m e. NN ) /\ ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( ( F ` n ) i^i ( F ` m ) ) = (/) ) |
| 139 |
138
|
ad5ant25 |
|- ( ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) /\ ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( ( F ` n ) i^i ( F ` m ) ) = (/) ) |
| 140 |
|
fvex |
|- ( G ` ( n - 1 ) ) e. _V |
| 141 |
7 140
|
ifex |
|- if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) e. _V |
| 142 |
141 113
|
mpan2 |
|- ( n e. NN -> ( F ` n ) = if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) ) |
| 143 |
142 13
|
sylan9eq |
|- ( ( n e. NN /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> ( F ` n ) = ( G ` ( n - 1 ) ) ) |
| 144 |
143
|
adantlr |
|- ( ( ( n e. NN /\ m e. NN ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> ( F ` n ) = ( G ` ( n - 1 ) ) ) |
| 145 |
144
|
3adant3 |
|- ( ( ( n e. NN /\ m e. NN ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( F ` n ) = ( G ` ( n - 1 ) ) ) |
| 146 |
4
|
a1i |
|- ( ( m e. NN /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> F = ( n e. NN |-> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) ) ) |
| 147 |
127
|
adantl |
|- ( ( ( m e. NN /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) /\ n = m ) -> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) = if ( ( m = 1 \/ -. ( m - 1 ) e. A ) , (/) , ( G ` ( m - 1 ) ) ) ) |
| 148 |
|
iffalse |
|- ( -. ( m = 1 \/ -. ( m - 1 ) e. A ) -> if ( ( m = 1 \/ -. ( m - 1 ) e. A ) , (/) , ( G ` ( m - 1 ) ) ) = ( G ` ( m - 1 ) ) ) |
| 149 |
148
|
ad2antlr |
|- ( ( ( m e. NN /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) /\ n = m ) -> if ( ( m = 1 \/ -. ( m - 1 ) e. A ) , (/) , ( G ` ( m - 1 ) ) ) = ( G ` ( m - 1 ) ) ) |
| 150 |
147 149
|
eqtrd |
|- ( ( ( m e. NN /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) /\ n = m ) -> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) = ( G ` ( m - 1 ) ) ) |
| 151 |
|
simpl |
|- ( ( m e. NN /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> m e. NN ) |
| 152 |
|
fvexd |
|- ( ( m e. NN /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( G ` ( m - 1 ) ) e. _V ) |
| 153 |
146 150 151 152
|
fvmptd |
|- ( ( m e. NN /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( F ` m ) = ( G ` ( m - 1 ) ) ) |
| 154 |
153
|
adantll |
|- ( ( ( n e. NN /\ m e. NN ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( F ` m ) = ( G ` ( m - 1 ) ) ) |
| 155 |
154
|
3adant2 |
|- ( ( ( n e. NN /\ m e. NN ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( F ` m ) = ( G ` ( m - 1 ) ) ) |
| 156 |
145 155
|
ineq12d |
|- ( ( ( n e. NN /\ m e. NN ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( ( F ` n ) i^i ( F ` m ) ) = ( ( G ` ( n - 1 ) ) i^i ( G ` ( m - 1 ) ) ) ) |
| 157 |
156
|
ad5ant245 |
|- ( ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( ( F ` n ) i^i ( F ` m ) ) = ( ( G ` ( n - 1 ) ) i^i ( G ` ( m - 1 ) ) ) ) |
| 158 |
19
|
ad2antlr |
|- ( ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( n - 1 ) e. A ) |
| 159 |
|
pm2.46 |
|- ( -. ( m = 1 \/ -. ( m - 1 ) e. A ) -> -. -. ( m - 1 ) e. A ) |
| 160 |
159
|
notnotrd |
|- ( -. ( m = 1 \/ -. ( m - 1 ) e. A ) -> ( m - 1 ) e. A ) |
| 161 |
160
|
adantl |
|- ( ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( m - 1 ) e. A ) |
| 162 |
|
f1of1 |
|- ( G : A -1-1-onto-> X -> G : A -1-1-> X ) |
| 163 |
2 162
|
syl |
|- ( ph -> G : A -1-1-> X ) |
| 164 |
|
dff14a |
|- ( G : A -1-1-> X <-> ( G : A --> X /\ A. x e. A A. y e. A ( x =/= y -> ( G ` x ) =/= ( G ` y ) ) ) ) |
| 165 |
163 164
|
sylib |
|- ( ph -> ( G : A --> X /\ A. x e. A A. y e. A ( x =/= y -> ( G ` x ) =/= ( G ` y ) ) ) ) |
| 166 |
165
|
simprd |
|- ( ph -> A. x e. A A. y e. A ( x =/= y -> ( G ` x ) =/= ( G ` y ) ) ) |
| 167 |
166
|
adantr |
|- ( ( ph /\ ( n e. NN /\ m e. NN ) ) -> A. x e. A A. y e. A ( x =/= y -> ( G ` x ) =/= ( G ` y ) ) ) |
| 168 |
167
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> A. x e. A A. y e. A ( x =/= y -> ( G ` x ) =/= ( G ` y ) ) ) |
| 169 |
158 161 168
|
jca31 |
|- ( ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( ( ( n - 1 ) e. A /\ ( m - 1 ) e. A ) /\ A. x e. A A. y e. A ( x =/= y -> ( G ` x ) =/= ( G ` y ) ) ) ) |
| 170 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
| 171 |
170
|
adantr |
|- ( ( n e. NN /\ m e. NN ) -> n e. CC ) |
| 172 |
171
|
ad2antlr |
|- ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) -> n e. CC ) |
| 173 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
| 174 |
173
|
adantl |
|- ( ( n e. NN /\ m e. NN ) -> m e. CC ) |
| 175 |
174
|
ad2antlr |
|- ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) -> m e. CC ) |
| 176 |
|
1cnd |
|- ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) -> 1 e. CC ) |
| 177 |
|
simpr |
|- ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) -> n =/= m ) |
| 178 |
172 175 176 177
|
subneintr2d |
|- ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) -> ( n - 1 ) =/= ( m - 1 ) ) |
| 179 |
178
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( n - 1 ) =/= ( m - 1 ) ) |
| 180 |
|
neeq1 |
|- ( x = ( n - 1 ) -> ( x =/= y <-> ( n - 1 ) =/= y ) ) |
| 181 |
|
fveq2 |
|- ( x = ( n - 1 ) -> ( G ` x ) = ( G ` ( n - 1 ) ) ) |
| 182 |
181
|
neeq1d |
|- ( x = ( n - 1 ) -> ( ( G ` x ) =/= ( G ` y ) <-> ( G ` ( n - 1 ) ) =/= ( G ` y ) ) ) |
| 183 |
180 182
|
imbi12d |
|- ( x = ( n - 1 ) -> ( ( x =/= y -> ( G ` x ) =/= ( G ` y ) ) <-> ( ( n - 1 ) =/= y -> ( G ` ( n - 1 ) ) =/= ( G ` y ) ) ) ) |
| 184 |
|
neeq2 |
|- ( y = ( m - 1 ) -> ( ( n - 1 ) =/= y <-> ( n - 1 ) =/= ( m - 1 ) ) ) |
| 185 |
|
fveq2 |
|- ( y = ( m - 1 ) -> ( G ` y ) = ( G ` ( m - 1 ) ) ) |
| 186 |
185
|
neeq2d |
|- ( y = ( m - 1 ) -> ( ( G ` ( n - 1 ) ) =/= ( G ` y ) <-> ( G ` ( n - 1 ) ) =/= ( G ` ( m - 1 ) ) ) ) |
| 187 |
184 186
|
imbi12d |
|- ( y = ( m - 1 ) -> ( ( ( n - 1 ) =/= y -> ( G ` ( n - 1 ) ) =/= ( G ` y ) ) <-> ( ( n - 1 ) =/= ( m - 1 ) -> ( G ` ( n - 1 ) ) =/= ( G ` ( m - 1 ) ) ) ) ) |
| 188 |
183 187
|
rspc2va |
|- ( ( ( ( n - 1 ) e. A /\ ( m - 1 ) e. A ) /\ A. x e. A A. y e. A ( x =/= y -> ( G ` x ) =/= ( G ` y ) ) ) -> ( ( n - 1 ) =/= ( m - 1 ) -> ( G ` ( n - 1 ) ) =/= ( G ` ( m - 1 ) ) ) ) |
| 189 |
169 179 188
|
sylc |
|- ( ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( G ` ( n - 1 ) ) =/= ( G ` ( m - 1 ) ) ) |
| 190 |
189
|
neneqd |
|- ( ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> -. ( G ` ( n - 1 ) ) = ( G ` ( m - 1 ) ) ) |
| 191 |
21
|
ad4ant13 |
|- ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( G ` ( n - 1 ) ) e. X ) |
| 192 |
16
|
ffvelcdmda |
|- ( ( ph /\ ( m - 1 ) e. A ) -> ( G ` ( m - 1 ) ) e. X ) |
| 193 |
160 192
|
sylan2 |
|- ( ( ph /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( G ` ( m - 1 ) ) e. X ) |
| 194 |
193
|
ad4ant14 |
|- ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( G ` ( m - 1 ) ) e. X ) |
| 195 |
|
id |
|- ( y = z -> y = z ) |
| 196 |
195
|
disjor |
|- ( Disj_ y e. X y <-> A. y e. X A. z e. X ( y = z \/ ( y i^i z ) = (/) ) ) |
| 197 |
3 196
|
sylib |
|- ( ph -> A. y e. X A. z e. X ( y = z \/ ( y i^i z ) = (/) ) ) |
| 198 |
197
|
ad3antrrr |
|- ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> A. y e. X A. z e. X ( y = z \/ ( y i^i z ) = (/) ) ) |
| 199 |
|
eqeq1 |
|- ( y = ( G ` ( n - 1 ) ) -> ( y = z <-> ( G ` ( n - 1 ) ) = z ) ) |
| 200 |
|
ineq1 |
|- ( y = ( G ` ( n - 1 ) ) -> ( y i^i z ) = ( ( G ` ( n - 1 ) ) i^i z ) ) |
| 201 |
200
|
eqeq1d |
|- ( y = ( G ` ( n - 1 ) ) -> ( ( y i^i z ) = (/) <-> ( ( G ` ( n - 1 ) ) i^i z ) = (/) ) ) |
| 202 |
199 201
|
orbi12d |
|- ( y = ( G ` ( n - 1 ) ) -> ( ( y = z \/ ( y i^i z ) = (/) ) <-> ( ( G ` ( n - 1 ) ) = z \/ ( ( G ` ( n - 1 ) ) i^i z ) = (/) ) ) ) |
| 203 |
|
eqeq2 |
|- ( z = ( G ` ( m - 1 ) ) -> ( ( G ` ( n - 1 ) ) = z <-> ( G ` ( n - 1 ) ) = ( G ` ( m - 1 ) ) ) ) |
| 204 |
|
ineq2 |
|- ( z = ( G ` ( m - 1 ) ) -> ( ( G ` ( n - 1 ) ) i^i z ) = ( ( G ` ( n - 1 ) ) i^i ( G ` ( m - 1 ) ) ) ) |
| 205 |
204
|
eqeq1d |
|- ( z = ( G ` ( m - 1 ) ) -> ( ( ( G ` ( n - 1 ) ) i^i z ) = (/) <-> ( ( G ` ( n - 1 ) ) i^i ( G ` ( m - 1 ) ) ) = (/) ) ) |
| 206 |
203 205
|
orbi12d |
|- ( z = ( G ` ( m - 1 ) ) -> ( ( ( G ` ( n - 1 ) ) = z \/ ( ( G ` ( n - 1 ) ) i^i z ) = (/) ) <-> ( ( G ` ( n - 1 ) ) = ( G ` ( m - 1 ) ) \/ ( ( G ` ( n - 1 ) ) i^i ( G ` ( m - 1 ) ) ) = (/) ) ) ) |
| 207 |
202 206
|
rspc2va |
|- ( ( ( ( G ` ( n - 1 ) ) e. X /\ ( G ` ( m - 1 ) ) e. X ) /\ A. y e. X A. z e. X ( y = z \/ ( y i^i z ) = (/) ) ) -> ( ( G ` ( n - 1 ) ) = ( G ` ( m - 1 ) ) \/ ( ( G ` ( n - 1 ) ) i^i ( G ` ( m - 1 ) ) ) = (/) ) ) |
| 208 |
191 194 198 207
|
syl21anc |
|- ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( ( G ` ( n - 1 ) ) = ( G ` ( m - 1 ) ) \/ ( ( G ` ( n - 1 ) ) i^i ( G ` ( m - 1 ) ) ) = (/) ) ) |
| 209 |
208
|
adantllr |
|- ( ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( ( G ` ( n - 1 ) ) = ( G ` ( m - 1 ) ) \/ ( ( G ` ( n - 1 ) ) i^i ( G ` ( m - 1 ) ) ) = (/) ) ) |
| 210 |
|
orel1 |
|- ( -. ( G ` ( n - 1 ) ) = ( G ` ( m - 1 ) ) -> ( ( ( G ` ( n - 1 ) ) = ( G ` ( m - 1 ) ) \/ ( ( G ` ( n - 1 ) ) i^i ( G ` ( m - 1 ) ) ) = (/) ) -> ( ( G ` ( n - 1 ) ) i^i ( G ` ( m - 1 ) ) ) = (/) ) ) |
| 211 |
190 209 210
|
sylc |
|- ( ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( ( G ` ( n - 1 ) ) i^i ( G ` ( m - 1 ) ) ) = (/) ) |
| 212 |
157 211
|
eqtrd |
|- ( ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) /\ -. ( m = 1 \/ -. ( m - 1 ) e. A ) ) -> ( ( F ` n ) i^i ( F ` m ) ) = (/) ) |
| 213 |
139 212
|
pm2.61dan |
|- ( ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) /\ -. ( n = 1 \/ -. ( n - 1 ) e. A ) ) -> ( ( F ` n ) i^i ( F ` m ) ) = (/) ) |
| 214 |
120 213
|
pm2.61dan |
|- ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) -> ( ( F ` n ) i^i ( F ` m ) ) = (/) ) |
| 215 |
214
|
olcd |
|- ( ( ( ph /\ ( n e. NN /\ m e. NN ) ) /\ n =/= m ) -> ( n = m \/ ( ( F ` n ) i^i ( F ` m ) ) = (/) ) ) |
| 216 |
111 215
|
pm2.61dane |
|- ( ( ph /\ ( n e. NN /\ m e. NN ) ) -> ( n = m \/ ( ( F ` n ) i^i ( F ` m ) ) = (/) ) ) |
| 217 |
216
|
ralrimivva |
|- ( ph -> A. n e. NN A. m e. NN ( n = m \/ ( ( F ` n ) i^i ( F ` m ) ) = (/) ) ) |
| 218 |
|
fveq2 |
|- ( n = m -> ( F ` n ) = ( F ` m ) ) |
| 219 |
218
|
disjor |
|- ( Disj_ n e. NN ( F ` n ) <-> A. n e. NN A. m e. NN ( n = m \/ ( ( F ` n ) i^i ( F ` m ) ) = (/) ) ) |
| 220 |
217 219
|
sylibr |
|- ( ph -> Disj_ n e. NN ( F ` n ) ) |
| 221 |
|
nnex |
|- NN e. _V |
| 222 |
221
|
mptex |
|- ( n e. NN |-> if ( ( n = 1 \/ -. ( n - 1 ) e. A ) , (/) , ( G ` ( n - 1 ) ) ) ) e. _V |
| 223 |
4 222
|
eqeltri |
|- F e. _V |
| 224 |
|
foeq1 |
|- ( f = F -> ( f : NN -onto-> ( X u. { (/) } ) <-> F : NN -onto-> ( X u. { (/) } ) ) ) |
| 225 |
|
simpl |
|- ( ( f = F /\ n e. NN ) -> f = F ) |
| 226 |
225
|
fveq1d |
|- ( ( f = F /\ n e. NN ) -> ( f ` n ) = ( F ` n ) ) |
| 227 |
226
|
disjeq2dv |
|- ( f = F -> ( Disj_ n e. NN ( f ` n ) <-> Disj_ n e. NN ( F ` n ) ) ) |
| 228 |
224 227
|
anbi12d |
|- ( f = F -> ( ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) <-> ( F : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( F ` n ) ) ) ) |
| 229 |
223 228
|
spcev |
|- ( ( F : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( F ` n ) ) -> E. f ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) ) |
| 230 |
110 220 229
|
syl2anc |
|- ( ph -> E. f ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) ) |