| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnfoctbdj.ctb |  |-  ( ph -> X ~<_ _om ) | 
						
							| 2 |  | nnfoctbdj.n0 |  |-  ( ph -> X =/= (/) ) | 
						
							| 3 |  | nnfoctbdj.dj |  |-  ( ph -> Disj_ y e. X y ) | 
						
							| 4 |  | nnfoctb |  |-  ( ( X ~<_ _om /\ X =/= (/) ) -> E. g g : NN -onto-> X ) | 
						
							| 5 | 1 2 4 | syl2anc |  |-  ( ph -> E. g g : NN -onto-> X ) | 
						
							| 6 |  | fofn |  |-  ( g : NN -onto-> X -> g Fn NN ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ph /\ g : NN -onto-> X ) -> g Fn NN ) | 
						
							| 8 |  | nnex |  |-  NN e. _V | 
						
							| 9 | 8 | a1i |  |-  ( ( ph /\ g : NN -onto-> X ) -> NN e. _V ) | 
						
							| 10 |  | ltwenn |  |-  < We NN | 
						
							| 11 | 10 | a1i |  |-  ( ( ph /\ g : NN -onto-> X ) -> < We NN ) | 
						
							| 12 | 7 9 11 | wessf1orn |  |-  ( ( ph /\ g : NN -onto-> X ) -> E. x e. ~P NN ( g |` x ) : x -1-1-onto-> ran g ) | 
						
							| 13 |  | elpwi |  |-  ( x e. ~P NN -> x C_ NN ) | 
						
							| 14 | 13 | 3ad2ant2 |  |-  ( ( ( ph /\ g : NN -onto-> X ) /\ x e. ~P NN /\ ( g |` x ) : x -1-1-onto-> ran g ) -> x C_ NN ) | 
						
							| 15 |  | simpr |  |-  ( ( g : NN -onto-> X /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ( g |` x ) : x -1-1-onto-> ran g ) | 
						
							| 16 |  | forn |  |-  ( g : NN -onto-> X -> ran g = X ) | 
						
							| 17 | 16 | adantr |  |-  ( ( g : NN -onto-> X /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ran g = X ) | 
						
							| 18 | 17 | f1oeq3d |  |-  ( ( g : NN -onto-> X /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ( ( g |` x ) : x -1-1-onto-> ran g <-> ( g |` x ) : x -1-1-onto-> X ) ) | 
						
							| 19 | 15 18 | mpbid |  |-  ( ( g : NN -onto-> X /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ( g |` x ) : x -1-1-onto-> X ) | 
						
							| 20 | 19 | adantll |  |-  ( ( ( ph /\ g : NN -onto-> X ) /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ( g |` x ) : x -1-1-onto-> X ) | 
						
							| 21 | 20 | 3adant2 |  |-  ( ( ( ph /\ g : NN -onto-> X ) /\ x e. ~P NN /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ( g |` x ) : x -1-1-onto-> X ) | 
						
							| 22 | 3 | adantr |  |-  ( ( ph /\ g : NN -onto-> X ) -> Disj_ y e. X y ) | 
						
							| 23 | 22 | 3ad2ant1 |  |-  ( ( ( ph /\ g : NN -onto-> X ) /\ x e. ~P NN /\ ( g |` x ) : x -1-1-onto-> ran g ) -> Disj_ y e. X y ) | 
						
							| 24 |  | eqeq1 |  |-  ( m = n -> ( m = 1 <-> n = 1 ) ) | 
						
							| 25 |  | oveq1 |  |-  ( m = n -> ( m - 1 ) = ( n - 1 ) ) | 
						
							| 26 | 25 | eleq1d |  |-  ( m = n -> ( ( m - 1 ) e. x <-> ( n - 1 ) e. x ) ) | 
						
							| 27 | 26 | notbid |  |-  ( m = n -> ( -. ( m - 1 ) e. x <-> -. ( n - 1 ) e. x ) ) | 
						
							| 28 | 24 27 | orbi12d |  |-  ( m = n -> ( ( m = 1 \/ -. ( m - 1 ) e. x ) <-> ( n = 1 \/ -. ( n - 1 ) e. x ) ) ) | 
						
							| 29 |  | fvoveq1 |  |-  ( m = n -> ( ( g |` x ) ` ( m - 1 ) ) = ( ( g |` x ) ` ( n - 1 ) ) ) | 
						
							| 30 | 28 29 | ifbieq2d |  |-  ( m = n -> if ( ( m = 1 \/ -. ( m - 1 ) e. x ) , (/) , ( ( g |` x ) ` ( m - 1 ) ) ) = if ( ( n = 1 \/ -. ( n - 1 ) e. x ) , (/) , ( ( g |` x ) ` ( n - 1 ) ) ) ) | 
						
							| 31 | 30 | cbvmptv |  |-  ( m e. NN |-> if ( ( m = 1 \/ -. ( m - 1 ) e. x ) , (/) , ( ( g |` x ) ` ( m - 1 ) ) ) ) = ( n e. NN |-> if ( ( n = 1 \/ -. ( n - 1 ) e. x ) , (/) , ( ( g |` x ) ` ( n - 1 ) ) ) ) | 
						
							| 32 | 14 21 23 31 | nnfoctbdjlem |  |-  ( ( ( ph /\ g : NN -onto-> X ) /\ x e. ~P NN /\ ( g |` x ) : x -1-1-onto-> ran g ) -> E. f ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) ) | 
						
							| 33 | 32 | 3exp |  |-  ( ( ph /\ g : NN -onto-> X ) -> ( x e. ~P NN -> ( ( g |` x ) : x -1-1-onto-> ran g -> E. f ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) ) ) ) | 
						
							| 34 | 33 | rexlimdv |  |-  ( ( ph /\ g : NN -onto-> X ) -> ( E. x e. ~P NN ( g |` x ) : x -1-1-onto-> ran g -> E. f ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) ) ) | 
						
							| 35 | 12 34 | mpd |  |-  ( ( ph /\ g : NN -onto-> X ) -> E. f ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) ) | 
						
							| 36 | 35 | ex |  |-  ( ph -> ( g : NN -onto-> X -> E. f ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) ) ) | 
						
							| 37 | 36 | exlimdv |  |-  ( ph -> ( E. g g : NN -onto-> X -> E. f ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) ) ) | 
						
							| 38 | 5 37 | mpd |  |-  ( ph -> E. f ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) ) |