Step |
Hyp |
Ref |
Expression |
1 |
|
nnfoctbdj.ctb |
|- ( ph -> X ~<_ _om ) |
2 |
|
nnfoctbdj.n0 |
|- ( ph -> X =/= (/) ) |
3 |
|
nnfoctbdj.dj |
|- ( ph -> Disj_ y e. X y ) |
4 |
|
nnfoctb |
|- ( ( X ~<_ _om /\ X =/= (/) ) -> E. g g : NN -onto-> X ) |
5 |
1 2 4
|
syl2anc |
|- ( ph -> E. g g : NN -onto-> X ) |
6 |
|
fofn |
|- ( g : NN -onto-> X -> g Fn NN ) |
7 |
6
|
adantl |
|- ( ( ph /\ g : NN -onto-> X ) -> g Fn NN ) |
8 |
|
nnex |
|- NN e. _V |
9 |
8
|
a1i |
|- ( ( ph /\ g : NN -onto-> X ) -> NN e. _V ) |
10 |
|
ltwenn |
|- < We NN |
11 |
10
|
a1i |
|- ( ( ph /\ g : NN -onto-> X ) -> < We NN ) |
12 |
7 9 11
|
wessf1orn |
|- ( ( ph /\ g : NN -onto-> X ) -> E. x e. ~P NN ( g |` x ) : x -1-1-onto-> ran g ) |
13 |
|
elpwi |
|- ( x e. ~P NN -> x C_ NN ) |
14 |
13
|
3ad2ant2 |
|- ( ( ( ph /\ g : NN -onto-> X ) /\ x e. ~P NN /\ ( g |` x ) : x -1-1-onto-> ran g ) -> x C_ NN ) |
15 |
|
simpr |
|- ( ( g : NN -onto-> X /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ( g |` x ) : x -1-1-onto-> ran g ) |
16 |
|
forn |
|- ( g : NN -onto-> X -> ran g = X ) |
17 |
16
|
adantr |
|- ( ( g : NN -onto-> X /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ran g = X ) |
18 |
17
|
f1oeq3d |
|- ( ( g : NN -onto-> X /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ( ( g |` x ) : x -1-1-onto-> ran g <-> ( g |` x ) : x -1-1-onto-> X ) ) |
19 |
15 18
|
mpbid |
|- ( ( g : NN -onto-> X /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ( g |` x ) : x -1-1-onto-> X ) |
20 |
19
|
adantll |
|- ( ( ( ph /\ g : NN -onto-> X ) /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ( g |` x ) : x -1-1-onto-> X ) |
21 |
20
|
3adant2 |
|- ( ( ( ph /\ g : NN -onto-> X ) /\ x e. ~P NN /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ( g |` x ) : x -1-1-onto-> X ) |
22 |
3
|
adantr |
|- ( ( ph /\ g : NN -onto-> X ) -> Disj_ y e. X y ) |
23 |
22
|
3ad2ant1 |
|- ( ( ( ph /\ g : NN -onto-> X ) /\ x e. ~P NN /\ ( g |` x ) : x -1-1-onto-> ran g ) -> Disj_ y e. X y ) |
24 |
|
eqeq1 |
|- ( m = n -> ( m = 1 <-> n = 1 ) ) |
25 |
|
oveq1 |
|- ( m = n -> ( m - 1 ) = ( n - 1 ) ) |
26 |
25
|
eleq1d |
|- ( m = n -> ( ( m - 1 ) e. x <-> ( n - 1 ) e. x ) ) |
27 |
26
|
notbid |
|- ( m = n -> ( -. ( m - 1 ) e. x <-> -. ( n - 1 ) e. x ) ) |
28 |
24 27
|
orbi12d |
|- ( m = n -> ( ( m = 1 \/ -. ( m - 1 ) e. x ) <-> ( n = 1 \/ -. ( n - 1 ) e. x ) ) ) |
29 |
|
fvoveq1 |
|- ( m = n -> ( ( g |` x ) ` ( m - 1 ) ) = ( ( g |` x ) ` ( n - 1 ) ) ) |
30 |
28 29
|
ifbieq2d |
|- ( m = n -> if ( ( m = 1 \/ -. ( m - 1 ) e. x ) , (/) , ( ( g |` x ) ` ( m - 1 ) ) ) = if ( ( n = 1 \/ -. ( n - 1 ) e. x ) , (/) , ( ( g |` x ) ` ( n - 1 ) ) ) ) |
31 |
30
|
cbvmptv |
|- ( m e. NN |-> if ( ( m = 1 \/ -. ( m - 1 ) e. x ) , (/) , ( ( g |` x ) ` ( m - 1 ) ) ) ) = ( n e. NN |-> if ( ( n = 1 \/ -. ( n - 1 ) e. x ) , (/) , ( ( g |` x ) ` ( n - 1 ) ) ) ) |
32 |
14 21 23 31
|
nnfoctbdjlem |
|- ( ( ( ph /\ g : NN -onto-> X ) /\ x e. ~P NN /\ ( g |` x ) : x -1-1-onto-> ran g ) -> E. f ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) ) |
33 |
32
|
3exp |
|- ( ( ph /\ g : NN -onto-> X ) -> ( x e. ~P NN -> ( ( g |` x ) : x -1-1-onto-> ran g -> E. f ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) ) ) ) |
34 |
33
|
rexlimdv |
|- ( ( ph /\ g : NN -onto-> X ) -> ( E. x e. ~P NN ( g |` x ) : x -1-1-onto-> ran g -> E. f ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) ) ) |
35 |
12 34
|
mpd |
|- ( ( ph /\ g : NN -onto-> X ) -> E. f ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) ) |
36 |
35
|
ex |
|- ( ph -> ( g : NN -onto-> X -> E. f ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) ) ) |
37 |
36
|
exlimdv |
|- ( ph -> ( E. g g : NN -onto-> X -> E. f ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) ) ) |
38 |
5 37
|
mpd |
|- ( ph -> E. f ( f : NN -onto-> ( X u. { (/) } ) /\ Disj_ n e. NN ( f ` n ) ) ) |