Step |
Hyp |
Ref |
Expression |
1 |
|
meadjuni.m |
|- ( ph -> M e. Meas ) |
2 |
|
meadjuni.s |
|- S = dom M |
3 |
|
meadjuni.x |
|- ( ph -> X C_ S ) |
4 |
|
meadjuni.cnb |
|- ( ph -> X ~<_ _om ) |
5 |
|
meadjuni.dj |
|- ( ph -> Disj_ x e. X x ) |
6 |
|
breq1 |
|- ( y = X -> ( y ~<_ _om <-> X ~<_ _om ) ) |
7 |
|
disjeq1 |
|- ( y = X -> ( Disj_ x e. y x <-> Disj_ x e. X x ) ) |
8 |
6 7
|
anbi12d |
|- ( y = X -> ( ( y ~<_ _om /\ Disj_ x e. y x ) <-> ( X ~<_ _om /\ Disj_ x e. X x ) ) ) |
9 |
|
unieq |
|- ( y = X -> U. y = U. X ) |
10 |
9
|
fveq2d |
|- ( y = X -> ( M ` U. y ) = ( M ` U. X ) ) |
11 |
|
reseq2 |
|- ( y = X -> ( M |` y ) = ( M |` X ) ) |
12 |
11
|
fveq2d |
|- ( y = X -> ( sum^ ` ( M |` y ) ) = ( sum^ ` ( M |` X ) ) ) |
13 |
10 12
|
eqeq12d |
|- ( y = X -> ( ( M ` U. y ) = ( sum^ ` ( M |` y ) ) <-> ( M ` U. X ) = ( sum^ ` ( M |` X ) ) ) ) |
14 |
8 13
|
imbi12d |
|- ( y = X -> ( ( ( y ~<_ _om /\ Disj_ x e. y x ) -> ( M ` U. y ) = ( sum^ ` ( M |` y ) ) ) <-> ( ( X ~<_ _om /\ Disj_ x e. X x ) -> ( M ` U. X ) = ( sum^ ` ( M |` X ) ) ) ) ) |
15 |
|
ismea |
|- ( M e. Meas <-> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. y e. ~P dom M ( ( y ~<_ _om /\ Disj_ x e. y x ) -> ( M ` U. y ) = ( sum^ ` ( M |` y ) ) ) ) ) |
16 |
1 15
|
sylib |
|- ( ph -> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. y e. ~P dom M ( ( y ~<_ _om /\ Disj_ x e. y x ) -> ( M ` U. y ) = ( sum^ ` ( M |` y ) ) ) ) ) |
17 |
16
|
simprd |
|- ( ph -> A. y e. ~P dom M ( ( y ~<_ _om /\ Disj_ x e. y x ) -> ( M ` U. y ) = ( sum^ ` ( M |` y ) ) ) ) |
18 |
1 2
|
dmmeasal |
|- ( ph -> S e. SAlg ) |
19 |
18 3
|
ssexd |
|- ( ph -> X e. _V ) |
20 |
3 2
|
sseqtrdi |
|- ( ph -> X C_ dom M ) |
21 |
19 20
|
elpwd |
|- ( ph -> X e. ~P dom M ) |
22 |
14 17 21
|
rspcdva |
|- ( ph -> ( ( X ~<_ _om /\ Disj_ x e. X x ) -> ( M ` U. X ) = ( sum^ ` ( M |` X ) ) ) ) |
23 |
4 5 22
|
mp2and |
|- ( ph -> ( M ` U. X ) = ( sum^ ` ( M |` X ) ) ) |