| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meadjuni.m |  |-  ( ph -> M e. Meas ) | 
						
							| 2 |  | meadjuni.s |  |-  S = dom M | 
						
							| 3 |  | meadjuni.x |  |-  ( ph -> X C_ S ) | 
						
							| 4 |  | meadjuni.cnb |  |-  ( ph -> X ~<_ _om ) | 
						
							| 5 |  | meadjuni.dj |  |-  ( ph -> Disj_ x e. X x ) | 
						
							| 6 |  | breq1 |  |-  ( y = X -> ( y ~<_ _om <-> X ~<_ _om ) ) | 
						
							| 7 |  | disjeq1 |  |-  ( y = X -> ( Disj_ x e. y x <-> Disj_ x e. X x ) ) | 
						
							| 8 | 6 7 | anbi12d |  |-  ( y = X -> ( ( y ~<_ _om /\ Disj_ x e. y x ) <-> ( X ~<_ _om /\ Disj_ x e. X x ) ) ) | 
						
							| 9 |  | unieq |  |-  ( y = X -> U. y = U. X ) | 
						
							| 10 | 9 | fveq2d |  |-  ( y = X -> ( M ` U. y ) = ( M ` U. X ) ) | 
						
							| 11 |  | reseq2 |  |-  ( y = X -> ( M |` y ) = ( M |` X ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( y = X -> ( sum^ ` ( M |` y ) ) = ( sum^ ` ( M |` X ) ) ) | 
						
							| 13 | 10 12 | eqeq12d |  |-  ( y = X -> ( ( M ` U. y ) = ( sum^ ` ( M |` y ) ) <-> ( M ` U. X ) = ( sum^ ` ( M |` X ) ) ) ) | 
						
							| 14 | 8 13 | imbi12d |  |-  ( y = X -> ( ( ( y ~<_ _om /\ Disj_ x e. y x ) -> ( M ` U. y ) = ( sum^ ` ( M |` y ) ) ) <-> ( ( X ~<_ _om /\ Disj_ x e. X x ) -> ( M ` U. X ) = ( sum^ ` ( M |` X ) ) ) ) ) | 
						
							| 15 |  | ismea |  |-  ( M e. Meas <-> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. y e. ~P dom M ( ( y ~<_ _om /\ Disj_ x e. y x ) -> ( M ` U. y ) = ( sum^ ` ( M |` y ) ) ) ) ) | 
						
							| 16 | 1 15 | sylib |  |-  ( ph -> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. y e. ~P dom M ( ( y ~<_ _om /\ Disj_ x e. y x ) -> ( M ` U. y ) = ( sum^ ` ( M |` y ) ) ) ) ) | 
						
							| 17 | 16 | simprd |  |-  ( ph -> A. y e. ~P dom M ( ( y ~<_ _om /\ Disj_ x e. y x ) -> ( M ` U. y ) = ( sum^ ` ( M |` y ) ) ) ) | 
						
							| 18 | 1 2 | dmmeasal |  |-  ( ph -> S e. SAlg ) | 
						
							| 19 | 18 3 | ssexd |  |-  ( ph -> X e. _V ) | 
						
							| 20 | 3 2 | sseqtrdi |  |-  ( ph -> X C_ dom M ) | 
						
							| 21 | 19 20 | elpwd |  |-  ( ph -> X e. ~P dom M ) | 
						
							| 22 | 14 17 21 | rspcdva |  |-  ( ph -> ( ( X ~<_ _om /\ Disj_ x e. X x ) -> ( M ` U. X ) = ( sum^ ` ( M |` X ) ) ) ) | 
						
							| 23 | 4 5 22 | mp2and |  |-  ( ph -> ( M ` U. X ) = ( sum^ ` ( M |` X ) ) ) |