Description: The domain of a measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dmmeasal.m | |- ( ph -> M e. Meas ) |
|
dmmeasal.s | |- S = dom M |
||
Assertion | dmmeasal | |- ( ph -> S e. SAlg ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmeasal.m | |- ( ph -> M e. Meas ) |
|
2 | dmmeasal.s | |- S = dom M |
|
3 | ismea | |- ( M e. Meas <-> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) ) |
|
4 | 1 3 | sylib | |- ( ph -> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) ) |
5 | 4 | simplld | |- ( ph -> ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) ) |
6 | 5 | simprd | |- ( ph -> dom M e. SAlg ) |
7 | 2 6 | eqeltrid | |- ( ph -> S e. SAlg ) |