Metamath Proof Explorer


Theorem dmmeasal

Description: The domain of a measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses dmmeasal.m
|- ( ph -> M e. Meas )
dmmeasal.s
|- S = dom M
Assertion dmmeasal
|- ( ph -> S e. SAlg )

Proof

Step Hyp Ref Expression
1 dmmeasal.m
 |-  ( ph -> M e. Meas )
2 dmmeasal.s
 |-  S = dom M
3 ismea
 |-  ( M e. Meas <-> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) )
4 1 3 sylib
 |-  ( ph -> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) )
5 4 simplld
 |-  ( ph -> ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) )
6 5 simprd
 |-  ( ph -> dom M e. SAlg )
7 2 6 eqeltrid
 |-  ( ph -> S e. SAlg )