Metamath Proof Explorer


Theorem dmmeasal

Description: The domain of a measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses dmmeasal.m ( 𝜑𝑀 ∈ Meas )
dmmeasal.s 𝑆 = dom 𝑀
Assertion dmmeasal ( 𝜑𝑆 ∈ SAlg )

Proof

Step Hyp Ref Expression
1 dmmeasal.m ( 𝜑𝑀 ∈ Meas )
2 dmmeasal.s 𝑆 = dom 𝑀
3 ismea ( 𝑀 ∈ Meas ↔ ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) ) ) )
4 1 3 sylib ( 𝜑 → ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) ) ) )
5 4 simplld ( 𝜑 → ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) )
6 5 simprd ( 𝜑 → dom 𝑀 ∈ SAlg )
7 2 6 eqeltrid ( 𝜑𝑆 ∈ SAlg )