Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝑀 ∈ Meas → 𝑀 ∈ Meas ) |
2 |
|
fex |
⊢ ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) → 𝑀 ∈ V ) |
3 |
|
id |
⊢ ( 𝑧 = 𝑀 → 𝑧 = 𝑀 ) |
4 |
|
dmeq |
⊢ ( 𝑧 = 𝑀 → dom 𝑧 = dom 𝑀 ) |
5 |
3 4
|
feq12d |
⊢ ( 𝑧 = 𝑀 → ( 𝑧 : dom 𝑧 ⟶ ( 0 [,] +∞ ) ↔ 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ) ) |
6 |
4
|
eleq1d |
⊢ ( 𝑧 = 𝑀 → ( dom 𝑧 ∈ SAlg ↔ dom 𝑀 ∈ SAlg ) ) |
7 |
5 6
|
anbi12d |
⊢ ( 𝑧 = 𝑀 → ( ( 𝑧 : dom 𝑧 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑧 ∈ SAlg ) ↔ ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ) ) |
8 |
|
fveq1 |
⊢ ( 𝑧 = 𝑀 → ( 𝑧 ‘ ∅ ) = ( 𝑀 ‘ ∅ ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑧 = 𝑀 → ( ( 𝑧 ‘ ∅ ) = 0 ↔ ( 𝑀 ‘ ∅ ) = 0 ) ) |
10 |
7 9
|
anbi12d |
⊢ ( 𝑧 = 𝑀 → ( ( ( 𝑧 : dom 𝑧 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑧 ∈ SAlg ) ∧ ( 𝑧 ‘ ∅ ) = 0 ) ↔ ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ) ) |
11 |
4
|
pweqd |
⊢ ( 𝑧 = 𝑀 → 𝒫 dom 𝑧 = 𝒫 dom 𝑀 ) |
12 |
|
fveq1 |
⊢ ( 𝑧 = 𝑀 → ( 𝑧 ‘ ∪ 𝑥 ) = ( 𝑀 ‘ ∪ 𝑥 ) ) |
13 |
|
reseq1 |
⊢ ( 𝑧 = 𝑀 → ( 𝑧 ↾ 𝑥 ) = ( 𝑀 ↾ 𝑥 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝑧 = 𝑀 → ( Σ^ ‘ ( 𝑧 ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) |
15 |
12 14
|
eqeq12d |
⊢ ( 𝑧 = 𝑀 → ( ( 𝑧 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑧 ↾ 𝑥 ) ) ↔ ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑧 = 𝑀 → ( ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑧 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑧 ↾ 𝑥 ) ) ) ↔ ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) ) |
17 |
11 16
|
raleqbidv |
⊢ ( 𝑧 = 𝑀 → ( ∀ 𝑥 ∈ 𝒫 dom 𝑧 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑧 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑧 ↾ 𝑥 ) ) ) ↔ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) ) |
18 |
10 17
|
anbi12d |
⊢ ( 𝑧 = 𝑀 → ( ( ( ( 𝑧 : dom 𝑧 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑧 ∈ SAlg ) ∧ ( 𝑧 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑧 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑧 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑧 ↾ 𝑥 ) ) ) ) ↔ ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) ) ) |
19 |
|
df-mea |
⊢ Meas = { 𝑧 ∣ ( ( ( 𝑧 : dom 𝑧 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑧 ∈ SAlg ) ∧ ( 𝑧 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑧 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑧 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑧 ↾ 𝑥 ) ) ) ) } |
20 |
18 19
|
elab2g |
⊢ ( 𝑀 ∈ V → ( 𝑀 ∈ Meas ↔ ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) ) ) |
21 |
2 20
|
syl |
⊢ ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) → ( 𝑀 ∈ Meas ↔ ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) ) ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) → ( 𝑀 ∈ Meas ↔ ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) ) ) |
23 |
22
|
ibir |
⊢ ( ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) → 𝑀 ∈ Meas ) |
24 |
18 19
|
elab2g |
⊢ ( 𝑀 ∈ Meas → ( 𝑀 ∈ Meas ↔ ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) ) ) |
25 |
1 23 24
|
pm5.21nii |
⊢ ( 𝑀 ∈ Meas ↔ ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) ) |