| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝑀  ∈  Meas  →  𝑀  ∈  Meas ) | 
						
							| 2 |  | fex | ⊢ ( ( 𝑀 : dom  𝑀 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑀  ∈  SAlg )  →  𝑀  ∈  V ) | 
						
							| 3 |  | id | ⊢ ( 𝑧  =  𝑀  →  𝑧  =  𝑀 ) | 
						
							| 4 |  | dmeq | ⊢ ( 𝑧  =  𝑀  →  dom  𝑧  =  dom  𝑀 ) | 
						
							| 5 | 3 4 | feq12d | ⊢ ( 𝑧  =  𝑀  →  ( 𝑧 : dom  𝑧 ⟶ ( 0 [,] +∞ )  ↔  𝑀 : dom  𝑀 ⟶ ( 0 [,] +∞ ) ) ) | 
						
							| 6 | 4 | eleq1d | ⊢ ( 𝑧  =  𝑀  →  ( dom  𝑧  ∈  SAlg  ↔  dom  𝑀  ∈  SAlg ) ) | 
						
							| 7 | 5 6 | anbi12d | ⊢ ( 𝑧  =  𝑀  →  ( ( 𝑧 : dom  𝑧 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑧  ∈  SAlg )  ↔  ( 𝑀 : dom  𝑀 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑀  ∈  SAlg ) ) ) | 
						
							| 8 |  | fveq1 | ⊢ ( 𝑧  =  𝑀  →  ( 𝑧 ‘ ∅ )  =  ( 𝑀 ‘ ∅ ) ) | 
						
							| 9 | 8 | eqeq1d | ⊢ ( 𝑧  =  𝑀  →  ( ( 𝑧 ‘ ∅ )  =  0  ↔  ( 𝑀 ‘ ∅ )  =  0 ) ) | 
						
							| 10 | 7 9 | anbi12d | ⊢ ( 𝑧  =  𝑀  →  ( ( ( 𝑧 : dom  𝑧 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑧  ∈  SAlg )  ∧  ( 𝑧 ‘ ∅ )  =  0 )  ↔  ( ( 𝑀 : dom  𝑀 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑀  ∈  SAlg )  ∧  ( 𝑀 ‘ ∅ )  =  0 ) ) ) | 
						
							| 11 | 4 | pweqd | ⊢ ( 𝑧  =  𝑀  →  𝒫  dom  𝑧  =  𝒫  dom  𝑀 ) | 
						
							| 12 |  | fveq1 | ⊢ ( 𝑧  =  𝑀  →  ( 𝑧 ‘ ∪  𝑥 )  =  ( 𝑀 ‘ ∪  𝑥 ) ) | 
						
							| 13 |  | reseq1 | ⊢ ( 𝑧  =  𝑀  →  ( 𝑧  ↾  𝑥 )  =  ( 𝑀  ↾  𝑥 ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝑧  =  𝑀  →  ( Σ^ ‘ ( 𝑧  ↾  𝑥 ) )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑥 ) ) ) | 
						
							| 15 | 12 14 | eqeq12d | ⊢ ( 𝑧  =  𝑀  →  ( ( 𝑧 ‘ ∪  𝑥 )  =  ( Σ^ ‘ ( 𝑧  ↾  𝑥 ) )  ↔  ( 𝑀 ‘ ∪  𝑥 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑥 ) ) ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑧  =  𝑀  →  ( ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( 𝑧 ‘ ∪  𝑥 )  =  ( Σ^ ‘ ( 𝑧  ↾  𝑥 ) ) )  ↔  ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( 𝑀 ‘ ∪  𝑥 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑥 ) ) ) ) ) | 
						
							| 17 | 11 16 | raleqbidv | ⊢ ( 𝑧  =  𝑀  →  ( ∀ 𝑥  ∈  𝒫  dom  𝑧 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( 𝑧 ‘ ∪  𝑥 )  =  ( Σ^ ‘ ( 𝑧  ↾  𝑥 ) ) )  ↔  ∀ 𝑥  ∈  𝒫  dom  𝑀 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( 𝑀 ‘ ∪  𝑥 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑥 ) ) ) ) ) | 
						
							| 18 | 10 17 | anbi12d | ⊢ ( 𝑧  =  𝑀  →  ( ( ( ( 𝑧 : dom  𝑧 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑧  ∈  SAlg )  ∧  ( 𝑧 ‘ ∅ )  =  0 )  ∧  ∀ 𝑥  ∈  𝒫  dom  𝑧 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( 𝑧 ‘ ∪  𝑥 )  =  ( Σ^ ‘ ( 𝑧  ↾  𝑥 ) ) ) )  ↔  ( ( ( 𝑀 : dom  𝑀 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑀  ∈  SAlg )  ∧  ( 𝑀 ‘ ∅ )  =  0 )  ∧  ∀ 𝑥  ∈  𝒫  dom  𝑀 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( 𝑀 ‘ ∪  𝑥 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑥 ) ) ) ) ) ) | 
						
							| 19 |  | df-mea | ⊢ Meas  =  { 𝑧  ∣  ( ( ( 𝑧 : dom  𝑧 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑧  ∈  SAlg )  ∧  ( 𝑧 ‘ ∅ )  =  0 )  ∧  ∀ 𝑥  ∈  𝒫  dom  𝑧 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( 𝑧 ‘ ∪  𝑥 )  =  ( Σ^ ‘ ( 𝑧  ↾  𝑥 ) ) ) ) } | 
						
							| 20 | 18 19 | elab2g | ⊢ ( 𝑀  ∈  V  →  ( 𝑀  ∈  Meas  ↔  ( ( ( 𝑀 : dom  𝑀 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑀  ∈  SAlg )  ∧  ( 𝑀 ‘ ∅ )  =  0 )  ∧  ∀ 𝑥  ∈  𝒫  dom  𝑀 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( 𝑀 ‘ ∪  𝑥 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑥 ) ) ) ) ) ) | 
						
							| 21 | 2 20 | syl | ⊢ ( ( 𝑀 : dom  𝑀 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑀  ∈  SAlg )  →  ( 𝑀  ∈  Meas  ↔  ( ( ( 𝑀 : dom  𝑀 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑀  ∈  SAlg )  ∧  ( 𝑀 ‘ ∅ )  =  0 )  ∧  ∀ 𝑥  ∈  𝒫  dom  𝑀 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( 𝑀 ‘ ∪  𝑥 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑥 ) ) ) ) ) ) | 
						
							| 22 | 21 | ad2antrr | ⊢ ( ( ( ( 𝑀 : dom  𝑀 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑀  ∈  SAlg )  ∧  ( 𝑀 ‘ ∅ )  =  0 )  ∧  ∀ 𝑥  ∈  𝒫  dom  𝑀 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( 𝑀 ‘ ∪  𝑥 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑥 ) ) ) )  →  ( 𝑀  ∈  Meas  ↔  ( ( ( 𝑀 : dom  𝑀 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑀  ∈  SAlg )  ∧  ( 𝑀 ‘ ∅ )  =  0 )  ∧  ∀ 𝑥  ∈  𝒫  dom  𝑀 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( 𝑀 ‘ ∪  𝑥 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑥 ) ) ) ) ) ) | 
						
							| 23 | 22 | ibir | ⊢ ( ( ( ( 𝑀 : dom  𝑀 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑀  ∈  SAlg )  ∧  ( 𝑀 ‘ ∅ )  =  0 )  ∧  ∀ 𝑥  ∈  𝒫  dom  𝑀 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( 𝑀 ‘ ∪  𝑥 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑥 ) ) ) )  →  𝑀  ∈  Meas ) | 
						
							| 24 | 18 19 | elab2g | ⊢ ( 𝑀  ∈  Meas  →  ( 𝑀  ∈  Meas  ↔  ( ( ( 𝑀 : dom  𝑀 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑀  ∈  SAlg )  ∧  ( 𝑀 ‘ ∅ )  =  0 )  ∧  ∀ 𝑥  ∈  𝒫  dom  𝑀 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( 𝑀 ‘ ∪  𝑥 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑥 ) ) ) ) ) ) | 
						
							| 25 | 1 23 24 | pm5.21nii | ⊢ ( 𝑀  ∈  Meas  ↔  ( ( ( 𝑀 : dom  𝑀 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑀  ∈  SAlg )  ∧  ( 𝑀 ‘ ∅ )  =  0 )  ∧  ∀ 𝑥  ∈  𝒫  dom  𝑀 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( 𝑀 ‘ ∪  𝑥 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑥 ) ) ) ) ) |