Metamath Proof Explorer


Definition df-mea

Description: Define the class of measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion df-mea Meas = { 𝑥 ∣ ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 ∈ SAlg ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( ( 𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤 ) → ( 𝑥 𝑦 ) = ( Σ^ ‘ ( 𝑥𝑦 ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmea Meas
1 vx 𝑥
2 1 cv 𝑥
3 2 cdm dom 𝑥
4 cc0 0
5 cicc [,]
6 cpnf +∞
7 4 6 5 co ( 0 [,] +∞ )
8 3 7 2 wf 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ )
9 csalg SAlg
10 3 9 wcel dom 𝑥 ∈ SAlg
11 8 10 wa ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 ∈ SAlg )
12 c0
13 12 2 cfv ( 𝑥 ‘ ∅ )
14 13 4 wceq ( 𝑥 ‘ ∅ ) = 0
15 11 14 wa ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 ∈ SAlg ) ∧ ( 𝑥 ‘ ∅ ) = 0 )
16 vy 𝑦
17 3 cpw 𝒫 dom 𝑥
18 16 cv 𝑦
19 cdom
20 com ω
21 18 20 19 wbr 𝑦 ≼ ω
22 vw 𝑤
23 22 cv 𝑤
24 22 18 23 wdisj Disj 𝑤𝑦 𝑤
25 21 24 wa ( 𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤 )
26 18 cuni 𝑦
27 26 2 cfv ( 𝑥 𝑦 )
28 csumge0 Σ^
29 2 18 cres ( 𝑥𝑦 )
30 29 28 cfv ( Σ^ ‘ ( 𝑥𝑦 ) )
31 27 30 wceq ( 𝑥 𝑦 ) = ( Σ^ ‘ ( 𝑥𝑦 ) )
32 25 31 wi ( ( 𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤 ) → ( 𝑥 𝑦 ) = ( Σ^ ‘ ( 𝑥𝑦 ) ) )
33 32 16 17 wral 𝑦 ∈ 𝒫 dom 𝑥 ( ( 𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤 ) → ( 𝑥 𝑦 ) = ( Σ^ ‘ ( 𝑥𝑦 ) ) )
34 15 33 wa ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 ∈ SAlg ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( ( 𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤 ) → ( 𝑥 𝑦 ) = ( Σ^ ‘ ( 𝑥𝑦 ) ) ) )
35 34 1 cab { 𝑥 ∣ ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 ∈ SAlg ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( ( 𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤 ) → ( 𝑥 𝑦 ) = ( Σ^ ‘ ( 𝑥𝑦 ) ) ) ) }
36 0 35 wceq Meas = { 𝑥 ∣ ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 ∈ SAlg ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( ( 𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤 ) → ( 𝑥 𝑦 ) = ( Σ^ ‘ ( 𝑥𝑦 ) ) ) ) }