Step |
Hyp |
Ref |
Expression |
0 |
|
cmea |
⊢ Meas |
1 |
|
vx |
⊢ 𝑥 |
2 |
1
|
cv |
⊢ 𝑥 |
3 |
2
|
cdm |
⊢ dom 𝑥 |
4 |
|
cc0 |
⊢ 0 |
5 |
|
cicc |
⊢ [,] |
6 |
|
cpnf |
⊢ +∞ |
7 |
4 6 5
|
co |
⊢ ( 0 [,] +∞ ) |
8 |
3 7 2
|
wf |
⊢ 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) |
9 |
|
csalg |
⊢ SAlg |
10 |
3 9
|
wcel |
⊢ dom 𝑥 ∈ SAlg |
11 |
8 10
|
wa |
⊢ ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 ∈ SAlg ) |
12 |
|
c0 |
⊢ ∅ |
13 |
12 2
|
cfv |
⊢ ( 𝑥 ‘ ∅ ) |
14 |
13 4
|
wceq |
⊢ ( 𝑥 ‘ ∅ ) = 0 |
15 |
11 14
|
wa |
⊢ ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 ∈ SAlg ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) |
16 |
|
vy |
⊢ 𝑦 |
17 |
3
|
cpw |
⊢ 𝒫 dom 𝑥 |
18 |
16
|
cv |
⊢ 𝑦 |
19 |
|
cdom |
⊢ ≼ |
20 |
|
com |
⊢ ω |
21 |
18 20 19
|
wbr |
⊢ 𝑦 ≼ ω |
22 |
|
vw |
⊢ 𝑤 |
23 |
22
|
cv |
⊢ 𝑤 |
24 |
22 18 23
|
wdisj |
⊢ Disj 𝑤 ∈ 𝑦 𝑤 |
25 |
21 24
|
wa |
⊢ ( 𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) |
26 |
18
|
cuni |
⊢ ∪ 𝑦 |
27 |
26 2
|
cfv |
⊢ ( 𝑥 ‘ ∪ 𝑦 ) |
28 |
|
csumge0 |
⊢ Σ^ |
29 |
2 18
|
cres |
⊢ ( 𝑥 ↾ 𝑦 ) |
30 |
29 28
|
cfv |
⊢ ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) |
31 |
27 30
|
wceq |
⊢ ( 𝑥 ‘ ∪ 𝑦 ) = ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) |
32 |
25 31
|
wi |
⊢ ( ( 𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) → ( 𝑥 ‘ ∪ 𝑦 ) = ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) ) |
33 |
32 16 17
|
wral |
⊢ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( ( 𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) → ( 𝑥 ‘ ∪ 𝑦 ) = ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) ) |
34 |
15 33
|
wa |
⊢ ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 ∈ SAlg ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( ( 𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) → ( 𝑥 ‘ ∪ 𝑦 ) = ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) ) ) |
35 |
34 1
|
cab |
⊢ { 𝑥 ∣ ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 ∈ SAlg ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( ( 𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) → ( 𝑥 ‘ ∪ 𝑦 ) = ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) ) ) } |
36 |
0 35
|
wceq |
⊢ Meas = { 𝑥 ∣ ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 ∈ SAlg ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( ( 𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) → ( 𝑥 ‘ ∪ 𝑦 ) = ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) ) ) } |