Metamath Proof Explorer


Definition df-mea

Description: Define the class of measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion df-mea
|- Meas = { x | ( ( ( x : dom x --> ( 0 [,] +oo ) /\ dom x e. SAlg ) /\ ( x ` (/) ) = 0 ) /\ A. y e. ~P dom x ( ( y ~<_ _om /\ Disj_ w e. y w ) -> ( x ` U. y ) = ( sum^ ` ( x |` y ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmea
 |-  Meas
1 vx
 |-  x
2 1 cv
 |-  x
3 2 cdm
 |-  dom x
4 cc0
 |-  0
5 cicc
 |-  [,]
6 cpnf
 |-  +oo
7 4 6 5 co
 |-  ( 0 [,] +oo )
8 3 7 2 wf
 |-  x : dom x --> ( 0 [,] +oo )
9 csalg
 |-  SAlg
10 3 9 wcel
 |-  dom x e. SAlg
11 8 10 wa
 |-  ( x : dom x --> ( 0 [,] +oo ) /\ dom x e. SAlg )
12 c0
 |-  (/)
13 12 2 cfv
 |-  ( x ` (/) )
14 13 4 wceq
 |-  ( x ` (/) ) = 0
15 11 14 wa
 |-  ( ( x : dom x --> ( 0 [,] +oo ) /\ dom x e. SAlg ) /\ ( x ` (/) ) = 0 )
16 vy
 |-  y
17 3 cpw
 |-  ~P dom x
18 16 cv
 |-  y
19 cdom
 |-  ~<_
20 com
 |-  _om
21 18 20 19 wbr
 |-  y ~<_ _om
22 vw
 |-  w
23 22 cv
 |-  w
24 22 18 23 wdisj
 |-  Disj_ w e. y w
25 21 24 wa
 |-  ( y ~<_ _om /\ Disj_ w e. y w )
26 18 cuni
 |-  U. y
27 26 2 cfv
 |-  ( x ` U. y )
28 csumge0
 |-  sum^
29 2 18 cres
 |-  ( x |` y )
30 29 28 cfv
 |-  ( sum^ ` ( x |` y ) )
31 27 30 wceq
 |-  ( x ` U. y ) = ( sum^ ` ( x |` y ) )
32 25 31 wi
 |-  ( ( y ~<_ _om /\ Disj_ w e. y w ) -> ( x ` U. y ) = ( sum^ ` ( x |` y ) ) )
33 32 16 17 wral
 |-  A. y e. ~P dom x ( ( y ~<_ _om /\ Disj_ w e. y w ) -> ( x ` U. y ) = ( sum^ ` ( x |` y ) ) )
34 15 33 wa
 |-  ( ( ( x : dom x --> ( 0 [,] +oo ) /\ dom x e. SAlg ) /\ ( x ` (/) ) = 0 ) /\ A. y e. ~P dom x ( ( y ~<_ _om /\ Disj_ w e. y w ) -> ( x ` U. y ) = ( sum^ ` ( x |` y ) ) ) )
35 34 1 cab
 |-  { x | ( ( ( x : dom x --> ( 0 [,] +oo ) /\ dom x e. SAlg ) /\ ( x ` (/) ) = 0 ) /\ A. y e. ~P dom x ( ( y ~<_ _om /\ Disj_ w e. y w ) -> ( x ` U. y ) = ( sum^ ` ( x |` y ) ) ) ) }
36 0 35 wceq
 |-  Meas = { x | ( ( ( x : dom x --> ( 0 [,] +oo ) /\ dom x e. SAlg ) /\ ( x ` (/) ) = 0 ) /\ A. y e. ~P dom x ( ( y ~<_ _om /\ Disj_ w e. y w ) -> ( x ` U. y ) = ( sum^ ` ( x |` y ) ) ) ) }