| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmea |
|- Meas |
| 1 |
|
vx |
|- x |
| 2 |
1
|
cv |
|- x |
| 3 |
2
|
cdm |
|- dom x |
| 4 |
|
cc0 |
|- 0 |
| 5 |
|
cicc |
|- [,] |
| 6 |
|
cpnf |
|- +oo |
| 7 |
4 6 5
|
co |
|- ( 0 [,] +oo ) |
| 8 |
3 7 2
|
wf |
|- x : dom x --> ( 0 [,] +oo ) |
| 9 |
|
csalg |
|- SAlg |
| 10 |
3 9
|
wcel |
|- dom x e. SAlg |
| 11 |
8 10
|
wa |
|- ( x : dom x --> ( 0 [,] +oo ) /\ dom x e. SAlg ) |
| 12 |
|
c0 |
|- (/) |
| 13 |
12 2
|
cfv |
|- ( x ` (/) ) |
| 14 |
13 4
|
wceq |
|- ( x ` (/) ) = 0 |
| 15 |
11 14
|
wa |
|- ( ( x : dom x --> ( 0 [,] +oo ) /\ dom x e. SAlg ) /\ ( x ` (/) ) = 0 ) |
| 16 |
|
vy |
|- y |
| 17 |
3
|
cpw |
|- ~P dom x |
| 18 |
16
|
cv |
|- y |
| 19 |
|
cdom |
|- ~<_ |
| 20 |
|
com |
|- _om |
| 21 |
18 20 19
|
wbr |
|- y ~<_ _om |
| 22 |
|
vw |
|- w |
| 23 |
22
|
cv |
|- w |
| 24 |
22 18 23
|
wdisj |
|- Disj_ w e. y w |
| 25 |
21 24
|
wa |
|- ( y ~<_ _om /\ Disj_ w e. y w ) |
| 26 |
18
|
cuni |
|- U. y |
| 27 |
26 2
|
cfv |
|- ( x ` U. y ) |
| 28 |
|
csumge0 |
|- sum^ |
| 29 |
2 18
|
cres |
|- ( x |` y ) |
| 30 |
29 28
|
cfv |
|- ( sum^ ` ( x |` y ) ) |
| 31 |
27 30
|
wceq |
|- ( x ` U. y ) = ( sum^ ` ( x |` y ) ) |
| 32 |
25 31
|
wi |
|- ( ( y ~<_ _om /\ Disj_ w e. y w ) -> ( x ` U. y ) = ( sum^ ` ( x |` y ) ) ) |
| 33 |
32 16 17
|
wral |
|- A. y e. ~P dom x ( ( y ~<_ _om /\ Disj_ w e. y w ) -> ( x ` U. y ) = ( sum^ ` ( x |` y ) ) ) |
| 34 |
15 33
|
wa |
|- ( ( ( x : dom x --> ( 0 [,] +oo ) /\ dom x e. SAlg ) /\ ( x ` (/) ) = 0 ) /\ A. y e. ~P dom x ( ( y ~<_ _om /\ Disj_ w e. y w ) -> ( x ` U. y ) = ( sum^ ` ( x |` y ) ) ) ) |
| 35 |
34 1
|
cab |
|- { x | ( ( ( x : dom x --> ( 0 [,] +oo ) /\ dom x e. SAlg ) /\ ( x ` (/) ) = 0 ) /\ A. y e. ~P dom x ( ( y ~<_ _om /\ Disj_ w e. y w ) -> ( x ` U. y ) = ( sum^ ` ( x |` y ) ) ) ) } |
| 36 |
0 35
|
wceq |
|- Meas = { x | ( ( ( x : dom x --> ( 0 [,] +oo ) /\ dom x e. SAlg ) /\ ( x ` (/) ) = 0 ) /\ A. y e. ~P dom x ( ( y ~<_ _om /\ Disj_ w e. y w ) -> ( x ` U. y ) = ( sum^ ` ( x |` y ) ) ) ) } |