Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( M e. Meas -> M e. Meas ) |
2 |
|
fex |
|- ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) -> M e. _V ) |
3 |
|
id |
|- ( z = M -> z = M ) |
4 |
|
dmeq |
|- ( z = M -> dom z = dom M ) |
5 |
3 4
|
feq12d |
|- ( z = M -> ( z : dom z --> ( 0 [,] +oo ) <-> M : dom M --> ( 0 [,] +oo ) ) ) |
6 |
4
|
eleq1d |
|- ( z = M -> ( dom z e. SAlg <-> dom M e. SAlg ) ) |
7 |
5 6
|
anbi12d |
|- ( z = M -> ( ( z : dom z --> ( 0 [,] +oo ) /\ dom z e. SAlg ) <-> ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) ) ) |
8 |
|
fveq1 |
|- ( z = M -> ( z ` (/) ) = ( M ` (/) ) ) |
9 |
8
|
eqeq1d |
|- ( z = M -> ( ( z ` (/) ) = 0 <-> ( M ` (/) ) = 0 ) ) |
10 |
7 9
|
anbi12d |
|- ( z = M -> ( ( ( z : dom z --> ( 0 [,] +oo ) /\ dom z e. SAlg ) /\ ( z ` (/) ) = 0 ) <-> ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) ) ) |
11 |
4
|
pweqd |
|- ( z = M -> ~P dom z = ~P dom M ) |
12 |
|
fveq1 |
|- ( z = M -> ( z ` U. x ) = ( M ` U. x ) ) |
13 |
|
reseq1 |
|- ( z = M -> ( z |` x ) = ( M |` x ) ) |
14 |
13
|
fveq2d |
|- ( z = M -> ( sum^ ` ( z |` x ) ) = ( sum^ ` ( M |` x ) ) ) |
15 |
12 14
|
eqeq12d |
|- ( z = M -> ( ( z ` U. x ) = ( sum^ ` ( z |` x ) ) <-> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) |
16 |
15
|
imbi2d |
|- ( z = M -> ( ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( z ` U. x ) = ( sum^ ` ( z |` x ) ) ) <-> ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) ) |
17 |
11 16
|
raleqbidv |
|- ( z = M -> ( A. x e. ~P dom z ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( z ` U. x ) = ( sum^ ` ( z |` x ) ) ) <-> A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) ) |
18 |
10 17
|
anbi12d |
|- ( z = M -> ( ( ( ( z : dom z --> ( 0 [,] +oo ) /\ dom z e. SAlg ) /\ ( z ` (/) ) = 0 ) /\ A. x e. ~P dom z ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( z ` U. x ) = ( sum^ ` ( z |` x ) ) ) ) <-> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) ) ) |
19 |
|
df-mea |
|- Meas = { z | ( ( ( z : dom z --> ( 0 [,] +oo ) /\ dom z e. SAlg ) /\ ( z ` (/) ) = 0 ) /\ A. x e. ~P dom z ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( z ` U. x ) = ( sum^ ` ( z |` x ) ) ) ) } |
20 |
18 19
|
elab2g |
|- ( M e. _V -> ( M e. Meas <-> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) ) ) |
21 |
2 20
|
syl |
|- ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) -> ( M e. Meas <-> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) ) ) |
22 |
21
|
ad2antrr |
|- ( ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) -> ( M e. Meas <-> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) ) ) |
23 |
22
|
ibir |
|- ( ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) -> M e. Meas ) |
24 |
18 19
|
elab2g |
|- ( M e. Meas -> ( M e. Meas <-> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) ) ) |
25 |
1 23 24
|
pm5.21nii |
|- ( M e. Meas <-> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = ( sum^ ` ( M |` x ) ) ) ) ) |