Metamath Proof Explorer


Definition df-mea

Description: Define the class of measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion df-mea Meas = x | x : dom x 0 +∞ dom x SAlg x = 0 y 𝒫 dom x y ω Disj w y w x y = sum^ x y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmea class Meas
1 vx setvar x
2 1 cv setvar x
3 2 cdm class dom x
4 cc0 class 0
5 cicc class .
6 cpnf class +∞
7 4 6 5 co class 0 +∞
8 3 7 2 wf wff x : dom x 0 +∞
9 csalg class SAlg
10 3 9 wcel wff dom x SAlg
11 8 10 wa wff x : dom x 0 +∞ dom x SAlg
12 c0 class
13 12 2 cfv class x
14 13 4 wceq wff x = 0
15 11 14 wa wff x : dom x 0 +∞ dom x SAlg x = 0
16 vy setvar y
17 3 cpw class 𝒫 dom x
18 16 cv setvar y
19 cdom class
20 com class ω
21 18 20 19 wbr wff y ω
22 vw setvar w
23 22 cv setvar w
24 22 18 23 wdisj wff Disj w y w
25 21 24 wa wff y ω Disj w y w
26 18 cuni class y
27 26 2 cfv class x y
28 csumge0 class sum^
29 2 18 cres class x y
30 29 28 cfv class sum^ x y
31 27 30 wceq wff x y = sum^ x y
32 25 31 wi wff y ω Disj w y w x y = sum^ x y
33 32 16 17 wral wff y 𝒫 dom x y ω Disj w y w x y = sum^ x y
34 15 33 wa wff x : dom x 0 +∞ dom x SAlg x = 0 y 𝒫 dom x y ω Disj w y w x y = sum^ x y
35 34 1 cab class x | x : dom x 0 +∞ dom x SAlg x = 0 y 𝒫 dom x y ω Disj w y w x y = sum^ x y
36 0 35 wceq wff Meas = x | x : dom x 0 +∞ dom x SAlg x = 0 y 𝒫 dom x y ω Disj w y w x y = sum^ x y