Metamath Proof Explorer


Definition df-mea

Description: Define the class of measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion df-mea Meas=x|x:domx0+∞domxSAlgx=0y𝒫domxyωDisjwywxy=sum^xy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmea classMeas
1 vx setvarx
2 1 cv setvarx
3 2 cdm classdomx
4 cc0 class0
5 cicc class.
6 cpnf class+∞
7 4 6 5 co class0+∞
8 3 7 2 wf wffx:domx0+∞
9 csalg classSAlg
10 3 9 wcel wffdomxSAlg
11 8 10 wa wffx:domx0+∞domxSAlg
12 c0 class
13 12 2 cfv classx
14 13 4 wceq wffx=0
15 11 14 wa wffx:domx0+∞domxSAlgx=0
16 vy setvary
17 3 cpw class𝒫domx
18 16 cv setvary
19 cdom class
20 com classω
21 18 20 19 wbr wffyω
22 vw setvarw
23 22 cv setvarw
24 22 18 23 wdisj wffDisjwyw
25 21 24 wa wffyωDisjwyw
26 18 cuni classy
27 26 2 cfv classxy
28 csumge0 classsum^
29 2 18 cres classxy
30 29 28 cfv classsum^xy
31 27 30 wceq wffxy=sum^xy
32 25 31 wi wffyωDisjwywxy=sum^xy
33 32 16 17 wral wffy𝒫domxyωDisjwywxy=sum^xy
34 15 33 wa wffx:domx0+∞domxSAlgx=0y𝒫domxyωDisjwywxy=sum^xy
35 34 1 cab classx|x:domx0+∞domxSAlgx=0y𝒫domxyωDisjwywxy=sum^xy
36 0 35 wceq wffMeas=x|x:domx0+∞domxSAlgx=0y𝒫domxyωDisjwywxy=sum^xy