Metamath Proof Explorer


Theorem dmmeasal

Description: The domain of a measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses dmmeasal.m φ M Meas
dmmeasal.s S = dom M
Assertion dmmeasal φ S SAlg

Proof

Step Hyp Ref Expression
1 dmmeasal.m φ M Meas
2 dmmeasal.s S = dom M
3 ismea M Meas M : dom M 0 +∞ dom M SAlg M = 0 x 𝒫 dom M x ω Disj y x y M x = sum^ M x
4 1 3 sylib φ M : dom M 0 +∞ dom M SAlg M = 0 x 𝒫 dom M x ω Disj y x y M x = sum^ M x
5 4 simplld φ M : dom M 0 +∞ dom M SAlg
6 5 simprd φ dom M SAlg
7 2 6 eqeltrid φ S SAlg