Metamath Proof Explorer


Theorem meaf

Description: A measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meaf.m φ M Meas
meaf.s S = dom M
Assertion meaf φ M : S 0 +∞

Proof

Step Hyp Ref Expression
1 meaf.m φ M Meas
2 meaf.s S = dom M
3 ismea M Meas M : dom M 0 +∞ dom M SAlg M = 0 x 𝒫 dom M x ω Disj y x y M x = sum^ M x
4 1 3 sylib φ M : dom M 0 +∞ dom M SAlg M = 0 x 𝒫 dom M x ω Disj y x y M x = sum^ M x
5 4 simpld φ M : dom M 0 +∞ dom M SAlg M = 0
6 5 simplld φ M : dom M 0 +∞
7 2 a1i φ S = dom M
8 7 feq2d φ M : S 0 +∞ M : dom M 0 +∞
9 6 8 mpbird φ M : S 0 +∞