| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meadjuni.m | ⊢ ( 𝜑  →  𝑀  ∈  Meas ) | 
						
							| 2 |  | meadjuni.s | ⊢ 𝑆  =  dom  𝑀 | 
						
							| 3 |  | meadjuni.x | ⊢ ( 𝜑  →  𝑋  ⊆  𝑆 ) | 
						
							| 4 |  | meadjuni.cnb | ⊢ ( 𝜑  →  𝑋  ≼  ω ) | 
						
							| 5 |  | meadjuni.dj | ⊢ ( 𝜑  →  Disj  𝑥  ∈  𝑋 𝑥 ) | 
						
							| 6 |  | breq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  ≼  ω  ↔  𝑋  ≼  ω ) ) | 
						
							| 7 |  | disjeq1 | ⊢ ( 𝑦  =  𝑋  →  ( Disj  𝑥  ∈  𝑦 𝑥  ↔  Disj  𝑥  ∈  𝑋 𝑥 ) ) | 
						
							| 8 | 6 7 | anbi12d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝑦  ≼  ω  ∧  Disj  𝑥  ∈  𝑦 𝑥 )  ↔  ( 𝑋  ≼  ω  ∧  Disj  𝑥  ∈  𝑋 𝑥 ) ) ) | 
						
							| 9 |  | unieq | ⊢ ( 𝑦  =  𝑋  →  ∪  𝑦  =  ∪  𝑋 ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑦  =  𝑋  →  ( 𝑀 ‘ ∪  𝑦 )  =  ( 𝑀 ‘ ∪  𝑋 ) ) | 
						
							| 11 |  | reseq2 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑀  ↾  𝑦 )  =  ( 𝑀  ↾  𝑋 ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝑦  =  𝑋  →  ( Σ^ ‘ ( 𝑀  ↾  𝑦 ) )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑋 ) ) ) | 
						
							| 13 | 10 12 | eqeq12d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝑀 ‘ ∪  𝑦 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑦 ) )  ↔  ( 𝑀 ‘ ∪  𝑋 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑋 ) ) ) ) | 
						
							| 14 | 8 13 | imbi12d | ⊢ ( 𝑦  =  𝑋  →  ( ( ( 𝑦  ≼  ω  ∧  Disj  𝑥  ∈  𝑦 𝑥 )  →  ( 𝑀 ‘ ∪  𝑦 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑦 ) ) )  ↔  ( ( 𝑋  ≼  ω  ∧  Disj  𝑥  ∈  𝑋 𝑥 )  →  ( 𝑀 ‘ ∪  𝑋 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑋 ) ) ) ) ) | 
						
							| 15 |  | ismea | ⊢ ( 𝑀  ∈  Meas  ↔  ( ( ( 𝑀 : dom  𝑀 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑀  ∈  SAlg )  ∧  ( 𝑀 ‘ ∅ )  =  0 )  ∧  ∀ 𝑦  ∈  𝒫  dom  𝑀 ( ( 𝑦  ≼  ω  ∧  Disj  𝑥  ∈  𝑦 𝑥 )  →  ( 𝑀 ‘ ∪  𝑦 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑦 ) ) ) ) ) | 
						
							| 16 | 1 15 | sylib | ⊢ ( 𝜑  →  ( ( ( 𝑀 : dom  𝑀 ⟶ ( 0 [,] +∞ )  ∧  dom  𝑀  ∈  SAlg )  ∧  ( 𝑀 ‘ ∅ )  =  0 )  ∧  ∀ 𝑦  ∈  𝒫  dom  𝑀 ( ( 𝑦  ≼  ω  ∧  Disj  𝑥  ∈  𝑦 𝑥 )  →  ( 𝑀 ‘ ∪  𝑦 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑦 ) ) ) ) ) | 
						
							| 17 | 16 | simprd | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝒫  dom  𝑀 ( ( 𝑦  ≼  ω  ∧  Disj  𝑥  ∈  𝑦 𝑥 )  →  ( 𝑀 ‘ ∪  𝑦 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑦 ) ) ) ) | 
						
							| 18 | 1 2 | dmmeasal | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 19 | 18 3 | ssexd | ⊢ ( 𝜑  →  𝑋  ∈  V ) | 
						
							| 20 | 3 2 | sseqtrdi | ⊢ ( 𝜑  →  𝑋  ⊆  dom  𝑀 ) | 
						
							| 21 | 19 20 | elpwd | ⊢ ( 𝜑  →  𝑋  ∈  𝒫  dom  𝑀 ) | 
						
							| 22 | 14 17 21 | rspcdva | ⊢ ( 𝜑  →  ( ( 𝑋  ≼  ω  ∧  Disj  𝑥  ∈  𝑋 𝑥 )  →  ( 𝑀 ‘ ∪  𝑋 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑋 ) ) ) ) | 
						
							| 23 | 4 5 22 | mp2and | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∪  𝑋 )  =  ( Σ^ ‘ ( 𝑀  ↾  𝑋 ) ) ) |