Metamath Proof Explorer


Theorem meadjuni

Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meadjuni.m φ M Meas
meadjuni.s S = dom M
meadjuni.x φ X S
meadjuni.cnb φ X ω
meadjuni.dj φ Disj x X x
Assertion meadjuni φ M X = sum^ M X

Proof

Step Hyp Ref Expression
1 meadjuni.m φ M Meas
2 meadjuni.s S = dom M
3 meadjuni.x φ X S
4 meadjuni.cnb φ X ω
5 meadjuni.dj φ Disj x X x
6 breq1 y = X y ω X ω
7 disjeq1 y = X Disj x y x Disj x X x
8 6 7 anbi12d y = X y ω Disj x y x X ω Disj x X x
9 unieq y = X y = X
10 9 fveq2d y = X M y = M X
11 reseq2 y = X M y = M X
12 11 fveq2d y = X sum^ M y = sum^ M X
13 10 12 eqeq12d y = X M y = sum^ M y M X = sum^ M X
14 8 13 imbi12d y = X y ω Disj x y x M y = sum^ M y X ω Disj x X x M X = sum^ M X
15 ismea M Meas M : dom M 0 +∞ dom M SAlg M = 0 y 𝒫 dom M y ω Disj x y x M y = sum^ M y
16 1 15 sylib φ M : dom M 0 +∞ dom M SAlg M = 0 y 𝒫 dom M y ω Disj x y x M y = sum^ M y
17 16 simprd φ y 𝒫 dom M y ω Disj x y x M y = sum^ M y
18 1 2 dmmeasal φ S SAlg
19 18 3 ssexd φ X V
20 3 2 sseqtrdi φ X dom M
21 19 20 elpwd φ X 𝒫 dom M
22 14 17 21 rspcdva φ X ω Disj x X x M X = sum^ M X
23 4 5 22 mp2and φ M X = sum^ M X