Step |
Hyp |
Ref |
Expression |
1 |
|
nnfoctbdj.ctb |
⊢ ( 𝜑 → 𝑋 ≼ ω ) |
2 |
|
nnfoctbdj.n0 |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
3 |
|
nnfoctbdj.dj |
⊢ ( 𝜑 → Disj 𝑦 ∈ 𝑋 𝑦 ) |
4 |
|
nnfoctb |
⊢ ( ( 𝑋 ≼ ω ∧ 𝑋 ≠ ∅ ) → ∃ 𝑔 𝑔 : ℕ –onto→ 𝑋 ) |
5 |
1 2 4
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑔 𝑔 : ℕ –onto→ 𝑋 ) |
6 |
|
fofn |
⊢ ( 𝑔 : ℕ –onto→ 𝑋 → 𝑔 Fn ℕ ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑔 : ℕ –onto→ 𝑋 ) → 𝑔 Fn ℕ ) |
8 |
|
nnex |
⊢ ℕ ∈ V |
9 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑔 : ℕ –onto→ 𝑋 ) → ℕ ∈ V ) |
10 |
|
ltwenn |
⊢ < We ℕ |
11 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑔 : ℕ –onto→ 𝑋 ) → < We ℕ ) |
12 |
7 9 11
|
wessf1orn |
⊢ ( ( 𝜑 ∧ 𝑔 : ℕ –onto→ 𝑋 ) → ∃ 𝑥 ∈ 𝒫 ℕ ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝑔 ) |
13 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 ℕ → 𝑥 ⊆ ℕ ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ –onto→ 𝑋 ) ∧ 𝑥 ∈ 𝒫 ℕ ∧ ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝑔 ) → 𝑥 ⊆ ℕ ) |
15 |
|
simpr |
⊢ ( ( 𝑔 : ℕ –onto→ 𝑋 ∧ ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝑔 ) → ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝑔 ) |
16 |
|
forn |
⊢ ( 𝑔 : ℕ –onto→ 𝑋 → ran 𝑔 = 𝑋 ) |
17 |
16
|
adantr |
⊢ ( ( 𝑔 : ℕ –onto→ 𝑋 ∧ ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝑔 ) → ran 𝑔 = 𝑋 ) |
18 |
17
|
f1oeq3d |
⊢ ( ( 𝑔 : ℕ –onto→ 𝑋 ∧ ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝑔 ) → ( ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝑔 ↔ ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ 𝑋 ) ) |
19 |
15 18
|
mpbid |
⊢ ( ( 𝑔 : ℕ –onto→ 𝑋 ∧ ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝑔 ) → ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ 𝑋 ) |
20 |
19
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ –onto→ 𝑋 ) ∧ ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝑔 ) → ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ 𝑋 ) |
21 |
20
|
3adant2 |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ –onto→ 𝑋 ) ∧ 𝑥 ∈ 𝒫 ℕ ∧ ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝑔 ) → ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ 𝑋 ) |
22 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 : ℕ –onto→ 𝑋 ) → Disj 𝑦 ∈ 𝑋 𝑦 ) |
23 |
22
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ –onto→ 𝑋 ) ∧ 𝑥 ∈ 𝒫 ℕ ∧ ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝑔 ) → Disj 𝑦 ∈ 𝑋 𝑦 ) |
24 |
|
eqeq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 = 1 ↔ 𝑛 = 1 ) ) |
25 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 − 1 ) = ( 𝑛 − 1 ) ) |
26 |
25
|
eleq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 − 1 ) ∈ 𝑥 ↔ ( 𝑛 − 1 ) ∈ 𝑥 ) ) |
27 |
26
|
notbid |
⊢ ( 𝑚 = 𝑛 → ( ¬ ( 𝑚 − 1 ) ∈ 𝑥 ↔ ¬ ( 𝑛 − 1 ) ∈ 𝑥 ) ) |
28 |
24 27
|
orbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝑥 ) ↔ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝑥 ) ) ) |
29 |
|
fvoveq1 |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑔 ↾ 𝑥 ) ‘ ( 𝑚 − 1 ) ) = ( ( 𝑔 ↾ 𝑥 ) ‘ ( 𝑛 − 1 ) ) ) |
30 |
28 29
|
ifbieq2d |
⊢ ( 𝑚 = 𝑛 → if ( ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝑥 ) , ∅ , ( ( 𝑔 ↾ 𝑥 ) ‘ ( 𝑚 − 1 ) ) ) = if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝑥 ) , ∅ , ( ( 𝑔 ↾ 𝑥 ) ‘ ( 𝑛 − 1 ) ) ) ) |
31 |
30
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ if ( ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝑥 ) , ∅ , ( ( 𝑔 ↾ 𝑥 ) ‘ ( 𝑚 − 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝑥 ) , ∅ , ( ( 𝑔 ↾ 𝑥 ) ‘ ( 𝑛 − 1 ) ) ) ) |
32 |
14 21 23 31
|
nnfoctbdjlem |
⊢ ( ( ( 𝜑 ∧ 𝑔 : ℕ –onto→ 𝑋 ) ∧ 𝑥 ∈ 𝒫 ℕ ∧ ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝑔 ) → ∃ 𝑓 ( 𝑓 : ℕ –onto→ ( 𝑋 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) ) |
33 |
32
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑔 : ℕ –onto→ 𝑋 ) → ( 𝑥 ∈ 𝒫 ℕ → ( ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝑔 → ∃ 𝑓 ( 𝑓 : ℕ –onto→ ( 𝑋 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) ) ) ) |
34 |
33
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑔 : ℕ –onto→ 𝑋 ) → ( ∃ 𝑥 ∈ 𝒫 ℕ ( 𝑔 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ran 𝑔 → ∃ 𝑓 ( 𝑓 : ℕ –onto→ ( 𝑋 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) ) ) |
35 |
12 34
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑔 : ℕ –onto→ 𝑋 ) → ∃ 𝑓 ( 𝑓 : ℕ –onto→ ( 𝑋 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) ) |
36 |
35
|
ex |
⊢ ( 𝜑 → ( 𝑔 : ℕ –onto→ 𝑋 → ∃ 𝑓 ( 𝑓 : ℕ –onto→ ( 𝑋 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) ) ) |
37 |
36
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑔 𝑔 : ℕ –onto→ 𝑋 → ∃ 𝑓 ( 𝑓 : ℕ –onto→ ( 𝑋 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) ) ) |
38 |
5 37
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ℕ –onto→ ( 𝑋 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) ) |