| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnfoctbdj.ctb | ⊢ ( 𝜑  →  𝑋  ≼  ω ) | 
						
							| 2 |  | nnfoctbdj.n0 | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 3 |  | nnfoctbdj.dj | ⊢ ( 𝜑  →  Disj  𝑦  ∈  𝑋 𝑦 ) | 
						
							| 4 |  | nnfoctb | ⊢ ( ( 𝑋  ≼  ω  ∧  𝑋  ≠  ∅ )  →  ∃ 𝑔 𝑔 : ℕ –onto→ 𝑋 ) | 
						
							| 5 | 1 2 4 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑔 𝑔 : ℕ –onto→ 𝑋 ) | 
						
							| 6 |  | fofn | ⊢ ( 𝑔 : ℕ –onto→ 𝑋  →  𝑔  Fn  ℕ ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝜑  ∧  𝑔 : ℕ –onto→ 𝑋 )  →  𝑔  Fn  ℕ ) | 
						
							| 8 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 9 | 8 | a1i | ⊢ ( ( 𝜑  ∧  𝑔 : ℕ –onto→ 𝑋 )  →  ℕ  ∈  V ) | 
						
							| 10 |  | ltwenn | ⊢  <   We  ℕ | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝜑  ∧  𝑔 : ℕ –onto→ 𝑋 )  →   <   We  ℕ ) | 
						
							| 12 | 7 9 11 | wessf1orn | ⊢ ( ( 𝜑  ∧  𝑔 : ℕ –onto→ 𝑋 )  →  ∃ 𝑥  ∈  𝒫  ℕ ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝑔 ) | 
						
							| 13 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  ℕ  →  𝑥  ⊆  ℕ ) | 
						
							| 14 | 13 | 3ad2ant2 | ⊢ ( ( ( 𝜑  ∧  𝑔 : ℕ –onto→ 𝑋 )  ∧  𝑥  ∈  𝒫  ℕ  ∧  ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝑔 )  →  𝑥  ⊆  ℕ ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝑔 : ℕ –onto→ 𝑋  ∧  ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝑔 )  →  ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝑔 ) | 
						
							| 16 |  | forn | ⊢ ( 𝑔 : ℕ –onto→ 𝑋  →  ran  𝑔  =  𝑋 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝑔 : ℕ –onto→ 𝑋  ∧  ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝑔 )  →  ran  𝑔  =  𝑋 ) | 
						
							| 18 | 17 | f1oeq3d | ⊢ ( ( 𝑔 : ℕ –onto→ 𝑋  ∧  ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝑔 )  →  ( ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝑔  ↔  ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ 𝑋 ) ) | 
						
							| 19 | 15 18 | mpbid | ⊢ ( ( 𝑔 : ℕ –onto→ 𝑋  ∧  ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝑔 )  →  ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ 𝑋 ) | 
						
							| 20 | 19 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑔 : ℕ –onto→ 𝑋 )  ∧  ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝑔 )  →  ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ 𝑋 ) | 
						
							| 21 | 20 | 3adant2 | ⊢ ( ( ( 𝜑  ∧  𝑔 : ℕ –onto→ 𝑋 )  ∧  𝑥  ∈  𝒫  ℕ  ∧  ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝑔 )  →  ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ 𝑋 ) | 
						
							| 22 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑔 : ℕ –onto→ 𝑋 )  →  Disj  𝑦  ∈  𝑋 𝑦 ) | 
						
							| 23 | 22 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑔 : ℕ –onto→ 𝑋 )  ∧  𝑥  ∈  𝒫  ℕ  ∧  ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝑔 )  →  Disj  𝑦  ∈  𝑋 𝑦 ) | 
						
							| 24 |  | eqeq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  =  1  ↔  𝑛  =  1 ) ) | 
						
							| 25 |  | oveq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  −  1 )  =  ( 𝑛  −  1 ) ) | 
						
							| 26 | 25 | eleq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑚  −  1 )  ∈  𝑥  ↔  ( 𝑛  −  1 )  ∈  𝑥 ) ) | 
						
							| 27 | 26 | notbid | ⊢ ( 𝑚  =  𝑛  →  ( ¬  ( 𝑚  −  1 )  ∈  𝑥  ↔  ¬  ( 𝑛  −  1 )  ∈  𝑥 ) ) | 
						
							| 28 | 24 27 | orbi12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑚  =  1  ∨  ¬  ( 𝑚  −  1 )  ∈  𝑥 )  ↔  ( 𝑛  =  1  ∨  ¬  ( 𝑛  −  1 )  ∈  𝑥 ) ) ) | 
						
							| 29 |  | fvoveq1 | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑔  ↾  𝑥 ) ‘ ( 𝑚  −  1 ) )  =  ( ( 𝑔  ↾  𝑥 ) ‘ ( 𝑛  −  1 ) ) ) | 
						
							| 30 | 28 29 | ifbieq2d | ⊢ ( 𝑚  =  𝑛  →  if ( ( 𝑚  =  1  ∨  ¬  ( 𝑚  −  1 )  ∈  𝑥 ) ,  ∅ ,  ( ( 𝑔  ↾  𝑥 ) ‘ ( 𝑚  −  1 ) ) )  =  if ( ( 𝑛  =  1  ∨  ¬  ( 𝑛  −  1 )  ∈  𝑥 ) ,  ∅ ,  ( ( 𝑔  ↾  𝑥 ) ‘ ( 𝑛  −  1 ) ) ) ) | 
						
							| 31 | 30 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ  ↦  if ( ( 𝑚  =  1  ∨  ¬  ( 𝑚  −  1 )  ∈  𝑥 ) ,  ∅ ,  ( ( 𝑔  ↾  𝑥 ) ‘ ( 𝑚  −  1 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  if ( ( 𝑛  =  1  ∨  ¬  ( 𝑛  −  1 )  ∈  𝑥 ) ,  ∅ ,  ( ( 𝑔  ↾  𝑥 ) ‘ ( 𝑛  −  1 ) ) ) ) | 
						
							| 32 | 14 21 23 31 | nnfoctbdjlem | ⊢ ( ( ( 𝜑  ∧  𝑔 : ℕ –onto→ 𝑋 )  ∧  𝑥  ∈  𝒫  ℕ  ∧  ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝑔 )  →  ∃ 𝑓 ( 𝑓 : ℕ –onto→ ( 𝑋  ∪  { ∅ } )  ∧  Disj  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 ) ) ) | 
						
							| 33 | 32 | 3exp | ⊢ ( ( 𝜑  ∧  𝑔 : ℕ –onto→ 𝑋 )  →  ( 𝑥  ∈  𝒫  ℕ  →  ( ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝑔  →  ∃ 𝑓 ( 𝑓 : ℕ –onto→ ( 𝑋  ∪  { ∅ } )  ∧  Disj  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 ) ) ) ) ) | 
						
							| 34 | 33 | rexlimdv | ⊢ ( ( 𝜑  ∧  𝑔 : ℕ –onto→ 𝑋 )  →  ( ∃ 𝑥  ∈  𝒫  ℕ ( 𝑔  ↾  𝑥 ) : 𝑥 –1-1-onto→ ran  𝑔  →  ∃ 𝑓 ( 𝑓 : ℕ –onto→ ( 𝑋  ∪  { ∅ } )  ∧  Disj  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 ) ) ) ) | 
						
							| 35 | 12 34 | mpd | ⊢ ( ( 𝜑  ∧  𝑔 : ℕ –onto→ 𝑋 )  →  ∃ 𝑓 ( 𝑓 : ℕ –onto→ ( 𝑋  ∪  { ∅ } )  ∧  Disj  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 ) ) ) | 
						
							| 36 | 35 | ex | ⊢ ( 𝜑  →  ( 𝑔 : ℕ –onto→ 𝑋  →  ∃ 𝑓 ( 𝑓 : ℕ –onto→ ( 𝑋  ∪  { ∅ } )  ∧  Disj  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 ) ) ) ) | 
						
							| 37 | 36 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑔 𝑔 : ℕ –onto→ 𝑋  →  ∃ 𝑓 ( 𝑓 : ℕ –onto→ ( 𝑋  ∪  { ∅ } )  ∧  Disj  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 ) ) ) ) | 
						
							| 38 | 5 37 | mpd | ⊢ ( 𝜑  →  ∃ 𝑓 ( 𝑓 : ℕ –onto→ ( 𝑋  ∪  { ∅ } )  ∧  Disj  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 ) ) ) |