| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnfoctbdjlem.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) |
| 2 |
|
nnfoctbdjlem.g |
⊢ ( 𝜑 → 𝐺 : 𝐴 –1-1-onto→ 𝑋 ) |
| 3 |
|
nnfoctbdjlem.dj |
⊢ ( 𝜑 → Disj 𝑦 ∈ 𝑋 𝑦 ) |
| 4 |
|
nnfoctbdjlem.f |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) ) |
| 5 |
|
iftrue |
⊢ ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) → if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) = ∅ ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) = ∅ ) |
| 7 |
|
0ex |
⊢ ∅ ∈ V |
| 8 |
7
|
snid |
⊢ ∅ ∈ { ∅ } |
| 9 |
|
elun2 |
⊢ ( ∅ ∈ { ∅ } → ∅ ∈ ( 𝑋 ∪ { ∅ } ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ∅ ∈ ( 𝑋 ∪ { ∅ } ) |
| 11 |
6 10
|
eqeltrdi |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) ∈ ( 𝑋 ∪ { ∅ } ) ) |
| 12 |
11
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) ∈ ( 𝑋 ∪ { ∅ } ) ) |
| 13 |
|
iffalse |
⊢ ( ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) → if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) = ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) |
| 14 |
13
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) = ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) |
| 15 |
|
f1of |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝑋 → 𝐺 : 𝐴 ⟶ 𝑋 ) |
| 16 |
2 15
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑋 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → 𝐺 : 𝐴 ⟶ 𝑋 ) |
| 18 |
|
pm2.46 |
⊢ ( ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) → ¬ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) |
| 19 |
18
|
notnotrd |
⊢ ( ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) → ( 𝑛 − 1 ) ∈ 𝐴 ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → ( 𝑛 − 1 ) ∈ 𝐴 ) |
| 21 |
17 20
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∈ 𝑋 ) |
| 22 |
21
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∈ 𝑋 ) |
| 23 |
|
elun1 |
⊢ ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∈ 𝑋 → ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∈ ( 𝑋 ∪ { ∅ } ) ) |
| 24 |
22 23
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∈ ( 𝑋 ∪ { ∅ } ) ) |
| 25 |
14 24
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) ∈ ( 𝑋 ∪ { ∅ } ) ) |
| 26 |
12 25
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) ∈ ( 𝑋 ∪ { ∅ } ) ) |
| 27 |
26 4
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( 𝑋 ∪ { ∅ } ) ) |
| 28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) |
| 29 |
|
f1ofo |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝑋 → 𝐺 : 𝐴 –onto→ 𝑋 ) |
| 30 |
|
forn |
⊢ ( 𝐺 : 𝐴 –onto→ 𝑋 → ran 𝐺 = 𝑋 ) |
| 31 |
2 29 30
|
3syl |
⊢ ( 𝜑 → ran 𝐺 = 𝑋 ) |
| 32 |
31
|
eqcomd |
⊢ ( 𝜑 → 𝑋 = ran 𝐺 ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑋 = ran 𝐺 ) |
| 34 |
28 33
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ ran 𝐺 ) |
| 35 |
16
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 36 |
|
fvelrnb |
⊢ ( 𝐺 Fn 𝐴 → ( 𝑦 ∈ ran 𝐺 ↔ ∃ 𝑘 ∈ 𝐴 ( 𝐺 ‘ 𝑘 ) = 𝑦 ) ) |
| 37 |
35 36
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝐺 ↔ ∃ 𝑘 ∈ 𝐴 ( 𝐺 ‘ 𝑘 ) = 𝑦 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 ∈ ran 𝐺 ↔ ∃ 𝑘 ∈ 𝐴 ( 𝐺 ‘ 𝑘 ) = 𝑦 ) ) |
| 39 |
34 38
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑘 ∈ 𝐴 ( 𝐺 ‘ 𝑘 ) = 𝑦 ) |
| 40 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ℕ ) |
| 41 |
40
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 42 |
41
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑦 ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 43 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) ) ) |
| 44 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑛 = ( 𝑘 + 1 ) ) → 1 ∈ ℝ ) |
| 45 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 1 ∈ ℝ ) |
| 46 |
40
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ℝ+ ) |
| 47 |
45 46
|
ltaddrp2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 1 < ( 𝑘 + 1 ) ) |
| 48 |
47
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑛 = ( 𝑘 + 1 ) ) → 1 < ( 𝑘 + 1 ) ) |
| 49 |
|
id |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → 𝑛 = ( 𝑘 + 1 ) ) |
| 50 |
49
|
eqcomd |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑘 + 1 ) = 𝑛 ) |
| 51 |
50
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑛 = ( 𝑘 + 1 ) ) → ( 𝑘 + 1 ) = 𝑛 ) |
| 52 |
48 51
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑛 = ( 𝑘 + 1 ) ) → 1 < 𝑛 ) |
| 53 |
44 52
|
gtned |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑛 = ( 𝑘 + 1 ) ) → 𝑛 ≠ 1 ) |
| 54 |
53
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑛 = ( 𝑘 + 1 ) ) → ¬ 𝑛 = 1 ) |
| 55 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑛 − 1 ) = ( ( 𝑘 + 1 ) − 1 ) ) |
| 56 |
40
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ℂ ) |
| 57 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 1 ∈ ℂ ) |
| 58 |
56 57
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 59 |
55 58
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑛 = ( 𝑘 + 1 ) ) → ( 𝑛 − 1 ) = 𝑘 ) |
| 60 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑛 = ( 𝑘 + 1 ) ) → 𝑘 ∈ 𝐴 ) |
| 61 |
59 60
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑛 = ( 𝑘 + 1 ) ) → ( 𝑛 − 1 ) ∈ 𝐴 ) |
| 62 |
61
|
notnotd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑛 = ( 𝑘 + 1 ) ) → ¬ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) |
| 63 |
|
ioran |
⊢ ( ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ↔ ( ¬ 𝑛 = 1 ∧ ¬ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) |
| 64 |
54 62 63
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑛 = ( 𝑘 + 1 ) ) → ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) |
| 65 |
64
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑛 = ( 𝑘 + 1 ) ) → if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) = ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) |
| 66 |
59
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑛 = ( 𝑘 + 1 ) ) → ( 𝐺 ‘ ( 𝑛 − 1 ) ) = ( 𝐺 ‘ 𝑘 ) ) |
| 67 |
65 66
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑛 = ( 𝑘 + 1 ) ) → if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) = ( 𝐺 ‘ 𝑘 ) ) |
| 68 |
16
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ) |
| 69 |
43 67 41 68
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐺 ‘ 𝑘 ) ) |
| 70 |
69
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑦 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐺 ‘ 𝑘 ) ) |
| 71 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑦 ) → ( 𝐺 ‘ 𝑘 ) = 𝑦 ) |
| 72 |
70 71
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑦 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 𝑦 ) |
| 73 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 74 |
73
|
eqeq1d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝐹 ‘ 𝑚 ) = 𝑦 ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 𝑦 ) ) |
| 75 |
74
|
rspcev |
⊢ ( ( ( 𝑘 + 1 ) ∈ ℕ ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 𝑦 ) → ∃ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) = 𝑦 ) |
| 76 |
42 72 75
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑦 ) → ∃ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) = 𝑦 ) |
| 77 |
76
|
3exp |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → ( ( 𝐺 ‘ 𝑘 ) = 𝑦 → ∃ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) = 𝑦 ) ) ) |
| 78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐴 → ( ( 𝐺 ‘ 𝑘 ) = 𝑦 → ∃ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) = 𝑦 ) ) ) |
| 79 |
78
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑘 ∈ 𝐴 ( 𝐺 ‘ 𝑘 ) = 𝑦 → ∃ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) = 𝑦 ) ) |
| 80 |
39 79
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) = 𝑦 ) |
| 81 |
|
id |
⊢ ( ( 𝐹 ‘ 𝑚 ) = 𝑦 → ( 𝐹 ‘ 𝑚 ) = 𝑦 ) |
| 82 |
81
|
eqcomd |
⊢ ( ( 𝐹 ‘ 𝑚 ) = 𝑦 → 𝑦 = ( 𝐹 ‘ 𝑚 ) ) |
| 83 |
82
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑚 ) = 𝑦 → 𝑦 = ( 𝐹 ‘ 𝑚 ) ) ) |
| 84 |
83
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑚 ∈ ℕ ( 𝐹 ‘ 𝑚 ) = 𝑦 → ∃ 𝑚 ∈ ℕ 𝑦 = ( 𝐹 ‘ 𝑚 ) ) ) |
| 85 |
80 84
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑚 ∈ ℕ 𝑦 = ( 𝐹 ‘ 𝑚 ) ) |
| 86 |
85
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∪ { ∅ } ) ) ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑚 ∈ ℕ 𝑦 = ( 𝐹 ‘ 𝑚 ) ) |
| 87 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∪ { ∅ } ) ) ∧ ¬ 𝑦 ∈ 𝑋 ) → 𝜑 ) |
| 88 |
|
elunnel1 |
⊢ ( ( 𝑦 ∈ ( 𝑋 ∪ { ∅ } ) ∧ ¬ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ { ∅ } ) |
| 89 |
|
elsni |
⊢ ( 𝑦 ∈ { ∅ } → 𝑦 = ∅ ) |
| 90 |
88 89
|
syl |
⊢ ( ( 𝑦 ∈ ( 𝑋 ∪ { ∅ } ) ∧ ¬ 𝑦 ∈ 𝑋 ) → 𝑦 = ∅ ) |
| 91 |
90
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∪ { ∅ } ) ) ∧ ¬ 𝑦 ∈ 𝑋 ) → 𝑦 = ∅ ) |
| 92 |
|
1nn |
⊢ 1 ∈ ℕ |
| 93 |
92
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 = ∅ ) → 1 ∈ ℕ ) |
| 94 |
5
|
orcs |
⊢ ( 𝑛 = 1 → if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) = ∅ ) |
| 95 |
92
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 96 |
7
|
a1i |
⊢ ( 𝜑 → ∅ ∈ V ) |
| 97 |
4 94 95 96
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ∅ ) |
| 98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = ∅ ) → ( 𝐹 ‘ 1 ) = ∅ ) |
| 99 |
|
id |
⊢ ( 𝑦 = ∅ → 𝑦 = ∅ ) |
| 100 |
99
|
eqcomd |
⊢ ( 𝑦 = ∅ → ∅ = 𝑦 ) |
| 101 |
100
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = ∅ ) → ∅ = 𝑦 ) |
| 102 |
98 101
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑦 = ∅ ) → 𝑦 = ( 𝐹 ‘ 1 ) ) |
| 103 |
|
fveq2 |
⊢ ( 𝑚 = 1 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 1 ) ) |
| 104 |
103
|
rspceeqv |
⊢ ( ( 1 ∈ ℕ ∧ 𝑦 = ( 𝐹 ‘ 1 ) ) → ∃ 𝑚 ∈ ℕ 𝑦 = ( 𝐹 ‘ 𝑚 ) ) |
| 105 |
93 102 104
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 = ∅ ) → ∃ 𝑚 ∈ ℕ 𝑦 = ( 𝐹 ‘ 𝑚 ) ) |
| 106 |
87 91 105
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∪ { ∅ } ) ) ∧ ¬ 𝑦 ∈ 𝑋 ) → ∃ 𝑚 ∈ ℕ 𝑦 = ( 𝐹 ‘ 𝑚 ) ) |
| 107 |
86 106
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 ∪ { ∅ } ) ) → ∃ 𝑚 ∈ ℕ 𝑦 = ( 𝐹 ‘ 𝑚 ) ) |
| 108 |
107
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑋 ∪ { ∅ } ) ∃ 𝑚 ∈ ℕ 𝑦 = ( 𝐹 ‘ 𝑚 ) ) |
| 109 |
|
dffo3 |
⊢ ( 𝐹 : ℕ –onto→ ( 𝑋 ∪ { ∅ } ) ↔ ( 𝐹 : ℕ ⟶ ( 𝑋 ∪ { ∅ } ) ∧ ∀ 𝑦 ∈ ( 𝑋 ∪ { ∅ } ) ∃ 𝑚 ∈ ℕ 𝑦 = ( 𝐹 ‘ 𝑚 ) ) ) |
| 110 |
27 108 109
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : ℕ –onto→ ( 𝑋 ∪ { ∅ } ) ) |
| 111 |
|
animorrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 = 𝑚 ) → ( 𝑛 = 𝑚 ∨ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ∅ ) ) |
| 112 |
6 7
|
eqeltrdi |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) ∈ V ) |
| 113 |
4
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) ∈ V ) → ( 𝐹 ‘ 𝑛 ) = if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) ) |
| 114 |
112 113
|
syldan |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑛 ) = if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) ) |
| 115 |
114 6
|
eqtrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑛 ) = ∅ ) |
| 116 |
115
|
ineq1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ( ∅ ∩ ( 𝐹 ‘ 𝑚 ) ) ) |
| 117 |
|
0in |
⊢ ( ∅ ∩ ( 𝐹 ‘ 𝑚 ) ) = ∅ |
| 118 |
116 117
|
eqtrdi |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ∅ ) |
| 119 |
118
|
adantlr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ∅ ) |
| 120 |
119
|
ad4ant24 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) ∧ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ∅ ) |
| 121 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 = 1 ↔ 𝑚 = 1 ) ) |
| 122 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 − 1 ) = ( 𝑚 − 1 ) ) |
| 123 |
122
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑛 − 1 ) ∈ 𝐴 ↔ ( 𝑚 − 1 ) ∈ 𝐴 ) ) |
| 124 |
123
|
notbid |
⊢ ( 𝑛 = 𝑚 → ( ¬ ( 𝑛 − 1 ) ∈ 𝐴 ↔ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) |
| 125 |
121 124
|
orbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ↔ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) ) |
| 126 |
122
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝐺 ‘ ( 𝑛 − 1 ) ) = ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) |
| 127 |
125 126
|
ifbieq2d |
⊢ ( 𝑛 = 𝑚 → if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) = if ( ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) ) |
| 128 |
|
simpl |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → 𝑚 ∈ ℕ ) |
| 129 |
|
iftrue |
⊢ ( ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) → if ( ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) = ∅ ) |
| 130 |
129 7
|
eqeltrdi |
⊢ ( ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) → if ( ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) ∈ V ) |
| 131 |
130
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → if ( ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) ∈ V ) |
| 132 |
4 127 128 131
|
fvmptd3 |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑚 ) = if ( ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) ) |
| 133 |
129
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → if ( ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) = ∅ ) |
| 134 |
132 133
|
eqtrd |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑚 ) = ∅ ) |
| 135 |
134
|
ineq2d |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑛 ) ∩ ∅ ) ) |
| 136 |
|
in0 |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∩ ∅ ) = ∅ |
| 137 |
135 136
|
eqtrdi |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ∅ ) |
| 138 |
137
|
adantll |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ∅ ) |
| 139 |
138
|
ad5ant25 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) ∧ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ∅ ) |
| 140 |
|
fvex |
⊢ ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∈ V |
| 141 |
7 140
|
ifex |
⊢ if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) ∈ V |
| 142 |
141 113
|
mpan2 |
⊢ ( 𝑛 ∈ ℕ → ( 𝐹 ‘ 𝑛 ) = if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) ) |
| 143 |
142 13
|
sylan9eq |
⊢ ( ( 𝑛 ∈ ℕ ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) |
| 144 |
143
|
adantlr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) |
| 145 |
144
|
3adant3 |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) |
| 146 |
4
|
a1i |
⊢ ( ( 𝑚 ∈ ℕ ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) ) ) |
| 147 |
127
|
adantl |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) ∧ 𝑛 = 𝑚 ) → if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) = if ( ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) ) |
| 148 |
|
iffalse |
⊢ ( ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) → if ( ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) = ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) |
| 149 |
148
|
ad2antlr |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) ∧ 𝑛 = 𝑚 ) → if ( ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) = ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) |
| 150 |
147 149
|
eqtrd |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) ∧ 𝑛 = 𝑚 ) → if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) = ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) |
| 151 |
|
simpl |
⊢ ( ( 𝑚 ∈ ℕ ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → 𝑚 ∈ ℕ ) |
| 152 |
|
fvexd |
⊢ ( ( 𝑚 ∈ ℕ ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( 𝐺 ‘ ( 𝑚 − 1 ) ) ∈ V ) |
| 153 |
146 150 151 152
|
fvmptd |
⊢ ( ( 𝑚 ∈ ℕ ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑚 ) = ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) |
| 154 |
153
|
adantll |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑚 ) = ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) |
| 155 |
154
|
3adant2 |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑚 ) = ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) |
| 156 |
145 155
|
ineq12d |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) ) |
| 157 |
156
|
ad5ant245 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) ) |
| 158 |
19
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( 𝑛 − 1 ) ∈ 𝐴 ) |
| 159 |
|
pm2.46 |
⊢ ( ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) → ¬ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) |
| 160 |
159
|
notnotrd |
⊢ ( ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) → ( 𝑚 − 1 ) ∈ 𝐴 ) |
| 161 |
160
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( 𝑚 − 1 ) ∈ 𝐴 ) |
| 162 |
|
f1of1 |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝑋 → 𝐺 : 𝐴 –1-1→ 𝑋 ) |
| 163 |
2 162
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝐴 –1-1→ 𝑋 ) |
| 164 |
|
dff14a |
⊢ ( 𝐺 : 𝐴 –1-1→ 𝑋 ↔ ( 𝐺 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 165 |
163 164
|
sylib |
⊢ ( 𝜑 → ( 𝐺 : 𝐴 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 166 |
165
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) |
| 167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) |
| 168 |
167
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) |
| 169 |
158 161 168
|
jca31 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( ( ( 𝑛 − 1 ) ∈ 𝐴 ∧ ( 𝑚 − 1 ) ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 170 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 171 |
170
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 172 |
171
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) → 𝑛 ∈ ℂ ) |
| 173 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
| 174 |
173
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
| 175 |
174
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) → 𝑚 ∈ ℂ ) |
| 176 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) → 1 ∈ ℂ ) |
| 177 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) → 𝑛 ≠ 𝑚 ) |
| 178 |
172 175 176 177
|
subneintr2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) → ( 𝑛 − 1 ) ≠ ( 𝑚 − 1 ) ) |
| 179 |
178
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( 𝑛 − 1 ) ≠ ( 𝑚 − 1 ) ) |
| 180 |
|
neeq1 |
⊢ ( 𝑥 = ( 𝑛 − 1 ) → ( 𝑥 ≠ 𝑦 ↔ ( 𝑛 − 1 ) ≠ 𝑦 ) ) |
| 181 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 − 1 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) |
| 182 |
181
|
neeq1d |
⊢ ( 𝑥 = ( 𝑛 − 1 ) → ( ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ ( 𝑛 − 1 ) ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) |
| 183 |
180 182
|
imbi12d |
⊢ ( 𝑥 = ( 𝑛 − 1 ) → ( ( 𝑥 ≠ 𝑦 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ↔ ( ( 𝑛 − 1 ) ≠ 𝑦 → ( 𝐺 ‘ ( 𝑛 − 1 ) ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 184 |
|
neeq2 |
⊢ ( 𝑦 = ( 𝑚 − 1 ) → ( ( 𝑛 − 1 ) ≠ 𝑦 ↔ ( 𝑛 − 1 ) ≠ ( 𝑚 − 1 ) ) ) |
| 185 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑚 − 1 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) |
| 186 |
185
|
neeq2d |
⊢ ( 𝑦 = ( 𝑚 − 1 ) → ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ≠ ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ ( 𝑛 − 1 ) ) ≠ ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) ) |
| 187 |
184 186
|
imbi12d |
⊢ ( 𝑦 = ( 𝑚 − 1 ) → ( ( ( 𝑛 − 1 ) ≠ 𝑦 → ( 𝐺 ‘ ( 𝑛 − 1 ) ) ≠ ( 𝐺 ‘ 𝑦 ) ) ↔ ( ( 𝑛 − 1 ) ≠ ( 𝑚 − 1 ) → ( 𝐺 ‘ ( 𝑛 − 1 ) ) ≠ ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) ) ) |
| 188 |
183 187
|
rspc2va |
⊢ ( ( ( ( 𝑛 − 1 ) ∈ 𝐴 ∧ ( 𝑚 − 1 ) ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) → ( ( 𝑛 − 1 ) ≠ ( 𝑚 − 1 ) → ( 𝐺 ‘ ( 𝑛 − 1 ) ) ≠ ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) ) |
| 189 |
169 179 188
|
sylc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( 𝐺 ‘ ( 𝑛 − 1 ) ) ≠ ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) |
| 190 |
189
|
neneqd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ¬ ( 𝐺 ‘ ( 𝑛 − 1 ) ) = ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) |
| 191 |
21
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∈ 𝑋 ) |
| 192 |
16
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ ( 𝑚 − 1 ) ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝑚 − 1 ) ) ∈ 𝑋 ) |
| 193 |
160 192
|
sylan2 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( 𝐺 ‘ ( 𝑚 − 1 ) ) ∈ 𝑋 ) |
| 194 |
193
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( 𝐺 ‘ ( 𝑚 − 1 ) ) ∈ 𝑋 ) |
| 195 |
|
id |
⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) |
| 196 |
195
|
disjor |
⊢ ( Disj 𝑦 ∈ 𝑋 𝑦 ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑦 = 𝑧 ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 197 |
3 196
|
sylib |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑦 = 𝑧 ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 198 |
197
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑦 = 𝑧 ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 199 |
|
eqeq1 |
⊢ ( 𝑦 = ( 𝐺 ‘ ( 𝑛 − 1 ) ) → ( 𝑦 = 𝑧 ↔ ( 𝐺 ‘ ( 𝑛 − 1 ) ) = 𝑧 ) ) |
| 200 |
|
ineq1 |
⊢ ( 𝑦 = ( 𝐺 ‘ ( 𝑛 − 1 ) ) → ( 𝑦 ∩ 𝑧 ) = ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ 𝑧 ) ) |
| 201 |
200
|
eqeq1d |
⊢ ( 𝑦 = ( 𝐺 ‘ ( 𝑛 − 1 ) ) → ( ( 𝑦 ∩ 𝑧 ) = ∅ ↔ ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ 𝑧 ) = ∅ ) ) |
| 202 |
199 201
|
orbi12d |
⊢ ( 𝑦 = ( 𝐺 ‘ ( 𝑛 − 1 ) ) → ( ( 𝑦 = 𝑧 ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ↔ ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) = 𝑧 ∨ ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ 𝑧 ) = ∅ ) ) ) |
| 203 |
|
eqeq2 |
⊢ ( 𝑧 = ( 𝐺 ‘ ( 𝑚 − 1 ) ) → ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) = 𝑧 ↔ ( 𝐺 ‘ ( 𝑛 − 1 ) ) = ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) ) |
| 204 |
|
ineq2 |
⊢ ( 𝑧 = ( 𝐺 ‘ ( 𝑚 − 1 ) ) → ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ 𝑧 ) = ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) ) |
| 205 |
204
|
eqeq1d |
⊢ ( 𝑧 = ( 𝐺 ‘ ( 𝑚 − 1 ) ) → ( ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ 𝑧 ) = ∅ ↔ ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) = ∅ ) ) |
| 206 |
203 205
|
orbi12d |
⊢ ( 𝑧 = ( 𝐺 ‘ ( 𝑚 − 1 ) ) → ( ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) = 𝑧 ∨ ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ 𝑧 ) = ∅ ) ↔ ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) = ( 𝐺 ‘ ( 𝑚 − 1 ) ) ∨ ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) = ∅ ) ) ) |
| 207 |
202 206
|
rspc2va |
⊢ ( ( ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∈ 𝑋 ∧ ( 𝐺 ‘ ( 𝑚 − 1 ) ) ∈ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑦 = 𝑧 ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) → ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) = ( 𝐺 ‘ ( 𝑚 − 1 ) ) ∨ ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) = ∅ ) ) |
| 208 |
191 194 198 207
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) = ( 𝐺 ‘ ( 𝑚 − 1 ) ) ∨ ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) = ∅ ) ) |
| 209 |
208
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) = ( 𝐺 ‘ ( 𝑚 − 1 ) ) ∨ ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) = ∅ ) ) |
| 210 |
|
orel1 |
⊢ ( ¬ ( 𝐺 ‘ ( 𝑛 − 1 ) ) = ( 𝐺 ‘ ( 𝑚 − 1 ) ) → ( ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) = ( 𝐺 ‘ ( 𝑚 − 1 ) ) ∨ ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) = ∅ ) → ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) = ∅ ) ) |
| 211 |
190 209 210
|
sylc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( ( 𝐺 ‘ ( 𝑛 − 1 ) ) ∩ ( 𝐺 ‘ ( 𝑚 − 1 ) ) ) = ∅ ) |
| 212 |
157 211
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) ∧ ¬ ( 𝑚 = 1 ∨ ¬ ( 𝑚 − 1 ) ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ∅ ) |
| 213 |
139 212
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) ∧ ¬ ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ∅ ) |
| 214 |
120 213
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) → ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ∅ ) |
| 215 |
214
|
olcd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑛 ≠ 𝑚 ) → ( 𝑛 = 𝑚 ∨ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ∅ ) ) |
| 216 |
111 215
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) ) → ( 𝑛 = 𝑚 ∨ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ∅ ) ) |
| 217 |
216
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ∀ 𝑚 ∈ ℕ ( 𝑛 = 𝑚 ∨ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ∅ ) ) |
| 218 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 219 |
218
|
disjor |
⊢ ( Disj 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ℕ ∀ 𝑚 ∈ ℕ ( 𝑛 = 𝑚 ∨ ( ( 𝐹 ‘ 𝑛 ) ∩ ( 𝐹 ‘ 𝑚 ) ) = ∅ ) ) |
| 220 |
217 219
|
sylibr |
⊢ ( 𝜑 → Disj 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ) |
| 221 |
|
nnex |
⊢ ℕ ∈ V |
| 222 |
221
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 = 1 ∨ ¬ ( 𝑛 − 1 ) ∈ 𝐴 ) , ∅ , ( 𝐺 ‘ ( 𝑛 − 1 ) ) ) ) ∈ V |
| 223 |
4 222
|
eqeltri |
⊢ 𝐹 ∈ V |
| 224 |
|
foeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : ℕ –onto→ ( 𝑋 ∪ { ∅ } ) ↔ 𝐹 : ℕ –onto→ ( 𝑋 ∪ { ∅ } ) ) ) |
| 225 |
|
simpl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑛 ∈ ℕ ) → 𝑓 = 𝐹 ) |
| 226 |
225
|
fveq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑛 ∈ ℕ ) → ( 𝑓 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 227 |
226
|
disjeq2dv |
⊢ ( 𝑓 = 𝐹 → ( Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ↔ Disj 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ) ) |
| 228 |
224 227
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : ℕ –onto→ ( 𝑋 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) ↔ ( 𝐹 : ℕ –onto→ ( 𝑋 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 229 |
223 228
|
spcev |
⊢ ( ( 𝐹 : ℕ –onto→ ( 𝑋 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ) → ∃ 𝑓 ( 𝑓 : ℕ –onto→ ( 𝑋 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) ) |
| 230 |
110 220 229
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ℕ –onto→ ( 𝑋 ∪ { ∅ } ) ∧ Disj 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) ) |