Description: Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcan2d . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
| pncand.2 | |- ( ph -> B e. CC ) |
||
| subaddd.3 | |- ( ph -> C e. CC ) |
||
| subneintr2d.4 | |- ( ph -> A =/= B ) |
||
| Assertion | subneintr2d | |- ( ph -> ( A - C ) =/= ( B - C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | |- ( ph -> A e. CC ) |
|
| 2 | pncand.2 | |- ( ph -> B e. CC ) |
|
| 3 | subaddd.3 | |- ( ph -> C e. CC ) |
|
| 4 | subneintr2d.4 | |- ( ph -> A =/= B ) |
|
| 5 | 1 2 3 | subcan2ad | |- ( ph -> ( ( A - C ) = ( B - C ) <-> A = B ) ) |
| 6 | 5 | necon3bid | |- ( ph -> ( ( A - C ) =/= ( B - C ) <-> A =/= B ) ) |
| 7 | 4 6 | mpbird | |- ( ph -> ( A - C ) =/= ( B - C ) ) |