Metamath Proof Explorer


Theorem mea0

Description: The measure of the empty set is always 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis mea0.1 ( 𝜑𝑀 ∈ Meas )
Assertion mea0 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )

Proof

Step Hyp Ref Expression
1 mea0.1 ( 𝜑𝑀 ∈ Meas )
2 ismea ( 𝑀 ∈ Meas ↔ ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) ) ) )
3 1 2 sylib ( 𝜑 → ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = ( Σ^ ‘ ( 𝑀𝑥 ) ) ) ) )
4 3 simplrd ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )