Description: The measure of the empty set is always 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mea0.1 | ⊢ ( 𝜑 → 𝑀 ∈ Meas ) | |
| Assertion | mea0 | ⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mea0.1 | ⊢ ( 𝜑 → 𝑀 ∈ Meas ) | |
| 2 | ismea | ⊢ ( 𝑀 ∈ Meas ↔ ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝜑 → ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) ) | 
| 4 | 3 | simplrd | ⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |