Description: The measure of the empty set is always 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mea0.1 | ⊢ ( 𝜑 → 𝑀 ∈ Meas ) | |
Assertion | mea0 | ⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mea0.1 | ⊢ ( 𝜑 → 𝑀 ∈ Meas ) | |
2 | ismea | ⊢ ( 𝑀 ∈ Meas ↔ ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) ) | |
3 | 1 2 | sylib | ⊢ ( 𝜑 → ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑥 ) ) ) ) ) |
4 | 3 | simplrd | ⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |