Description: Step 8 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | merlem4 | |- ( ta -> ( ( ta -> ph ) -> ( th -> ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meredith | |- ( ( ( ( ( ph -> ph ) -> ( -. th -> -. th ) ) -> th ) -> ta ) -> ( ( ta -> ph ) -> ( th -> ph ) ) ) |
|
2 | merlem3 | |- ( ( ( ( ( ( ph -> ph ) -> ( -. th -> -. th ) ) -> th ) -> ta ) -> ( ( ta -> ph ) -> ( th -> ph ) ) ) -> ( ta -> ( ( ta -> ph ) -> ( th -> ph ) ) ) ) |
|
3 | 1 2 | ax-mp | |- ( ta -> ( ( ta -> ph ) -> ( th -> ph ) ) ) |