Metamath Proof Explorer


Theorem merlem8

Description: Step 15 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 22-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merlem8
|- ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) )

Proof

Step Hyp Ref Expression
1 meredith
 |-  ( ( ( ( ( ph -> ph ) -> ( -. ph -> -. ph ) ) -> ph ) -> ph ) -> ( ( ph -> ph ) -> ( ph -> ph ) ) )
2 merlem7
 |-  ( ( ( ( ( ( ph -> ph ) -> ( -. ph -> -. ph ) ) -> ph ) -> ph ) -> ( ( ph -> ph ) -> ( ph -> ph ) ) ) -> ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) ) )
3 1 2 ax-mp
 |-  ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) )